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Abstract: Let X, Y be real normed linear spaces with
scalar product and F:B(xo,r)——e-Y be a Lipschitzian mapping

which can be approximated by a family of linear, continuous,
"uniformly" open mappings with a certain accuragy. Then it
is proved that FxO lies in int R(F), see Theorem 1. Further-

more, additional conditions satisfying Fx,e int R(F) are dis-

cussed. The proof of the quoted result is carried out by de-
veloping of the method of Pourciau [5, Section 91, where the
finitely dimensional case is considered.

Key words: Space with scalar product, Lipschitzian map-
ping, convex closed set, interior(of the closure) of range,
interior mapping theorem.
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Introﬁuction. The well known interior mapping theorem,
due to Graves [ 3, Theorem 1], asserts that Fx,€ int R(F) if
the mapping F:X—> Y does not differ much from a linear, con-
tinuous, open mapping L near x, and X is complete. Recently
Pourciau [ 5] obtained the same conclusion provided that X
and Y are finitely dimensional and the only mepping L is re-
placed by a family of linear, surjective (i.e., open) mapp-

ings. His result reads as follows:
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Theorem (Pourciau [5, Theorem 6.1]). ILet F: R® — R n
m&n, be a Lipschitzian mapping, Xy € int D(F), and let the
Clarke subdifferential (ef. [1, Definition 1], [ 4, Section 2])

8F(x,) = co {hii‘gl aF(xy) | x —> x,, aF(x,) exist}

be surjective, i.e., each Le aF%xo) is surjective.

Then Fx e int R(F).

It should te noted that, in the case m = n, the above re-
sult is contained in Clarke’s inverse function theorem [1,
Theorem 1].

The aim of this note is to extend, as long as we are ab-
le, the Pourciau theorem to infinitely dimensional spaces,
see Theorem 1. In the proof we follow [5, Section 9], where a
penalty functional technique is used. But some difficulties
are to be avoided in our situation. Namely, in [ 5, Section 91,
the Clarke subdifferential of some nonnegative continuous
functional at a point of its minimum is computed with help of
the chain rule [5, Proposition 4.8]. However, in our case no
kind of differentiability is assumed and hence no chain rule
is available. Moqeover,‘in an infinitely dimensional space,
it may happen that a functional on a closed ball attains mi-
nimum in no point.

The obtained result is, unfortunately, somewhat weaker
than what we would wish. That is we get that Fxoe int R(F)
only. In the last section there are given some additional con-
ditions under which our result becomes an interior mapping
theorem, i.e., Fx e int R(F).

Als o the sense of the condition (2) is explained in this

section,.
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Result. Let X, Y be real normed linear spaces with sca-
lar products {.,.> and corresponding norms Nell, i.e.,
{uu’= lul. B(x,,r) stands for the open ball of centre
x,€ X and radius r> 0. The clom\lre of a set McX is denoted
by D—l, the closed convex hull of M by co M. M~ stands for the
set

{xeX |{x,m>= O for all meM§¥

Given a mapping F:X—> Y, its domain and range are denoted

by D(F) and R(F) respectively. The space of all continuous,
linear mappings L:X—> ¥, with D(L) = X, endowed with the usu-
al linear structure and norm is denoted by & (X,Y). The norm

WLl of L € £(X,Y) is defined by
ILh = sup f MIx Ml | Nxlh= 1% .

L* means the adjoint mapping to L, N(L) is the space of all
x € X satisfying Ix = O. R® stands for the n-dimensional Eu-

clidean space.

Theorem 1. let X, Y be real normed linear spaces with
scalar products and F:X— Y be a mapping with 'B_(;;,-r—) c D(F)
for some x,€& X and some r>0. Assume that there are numbers
&> 0, e LO,%), > > 0, and a set WL c L (X,Y) such that
the following three conditions are satisfied:

(1) ¥ x, XeBlx,,r) WFx - Fxl £ ylx-xl,
(2) YyeY 30%xxeX VLet Cy,lx) z Uyl \xll,
(3) Vx, XeBlx,r) 3ALe®™ |FX-Fx-Lx-xlé&
< plx -xl.
Then Fxoe int R(F); more precisely,

B(Fxo,(% -@3)r)c F(E(xo,r)).
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Proof: Fix yes(pxo,(g = @)r), y+Fx , arbitrarily.
We shall argue by contradiction, that is, let there bego > 0
such that
(4) ¥ xeB(x,,r) IFx - ylz p >o.
We shall consider the following functional

e(x) =IFx -yl + kllx - x, !, xeg(—xo,—r),

where
_ 2
(5) k==2lFx, -yl.
(We note that the member k il x - X, Il plays the role of a "pe-

mlty".) Denote
m = inf{g(x) | xeB(x,,r)3.

At this point the proof splits into two cases. First let us

assume that

(6) m<lFx, - yll L= @(xy)] .

We remark that k<o - 23 for lexo -yl < (%’ - R)r. Choose
(1) AeOe =28 -K)N©O,FIFx, -yl - m)

and denote

M={xeBlx,,r)|g(x)<n+43.
We claim

(8) Mc{xe B(x,,5) | Ix - x [ > 3.

‘ r-k

(In the sequel we shall show that Y - k>0.) Indeed, let
xeM. If Ix - x, 02 %, it would then follow by (4),(5) and
(7) that

A+ m> gx)

IFx - ylh+xlix - x>k llx - x\ z k§=

IFx, =y >2A +m,
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a contradiction. Hence xé& B(xo,%‘). Also, (1) and (7) yield
A+m>IFx -yl +kllx-x Iz Fxo-y\I-llFx-hOI\+
+klx =-x NzIFx, - yh- (=X lix -x, 1> 24 +m -

- (- x=xl, (=K Ix-x >4,

which completes the proof of (8). The last inequality also
shows that 7 > k.

Fix xe M and heB(O,%). By (8), x + heB(xo,r). We shall
approximate the difference g(x + h) - cy(x) with help of so-
me linear mapping. For brevity put

a=Fx-y,b=F(x+h) -y
and choose some L e 721 which corresponds to x, x + h by (3).

Then (1),(3) and (4) yield

Iol - Hall - $E82 = b (b - al? 4 2(b - & - In,a)) +

lall - bl 1 Dus. 1D
[ST0ja = oM = Taf + by (¥ 1hI° + 28 nklal) +

+ 1Ldinl -,,—}nii%gﬁ-—é z%('r“ ALIPARI® + 280Nl ,

i.e., r

+ {lh,a?

{Llh,Fx - .v) .

IF(x +h) - yl-lF-yl-
lrx -yl

(9)
A ,};- (7 + 1LDINIZ + 280N 0.

Similarly, es ix - x,ll > —A-_—E owing to (8), we have

7
: C(h,x - 2
lx +h = x Il = llx = x Il - X=Xt = il
Ix - x ! llx+nh-xl+lx-x)
o {B,% = x> Ix = xli= llx + b = xI 2l , T K2
lx - xo 0 Nx+h=xfivllx=xl” lx-xi_ A ’

L A
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Thus, adding the last two inequalities, we get
{Ih,Fx - y) . {h,x - x>
IFx -y Ix = x, I

é[(_ﬂ%n:é'é_m.' + 215_5)".}‘" +2p] tnl.

Furthermore there is (see (7)) dJe (0,%) such that

£

g(x + h) - g(x) -

2

(%Jf-ﬁg."é‘.ha?’;—k)azw -A-2p- k.

Thus we get that

(10) glx+n) - @(x) - SFE =32 £ p)n

whenever xe M, h €B(0,d") and L corresponds to X, X + h by
(3).

Now let XeM be such that @(X)<m + %-JA . By (2),
there is he X, IRl = %d" , such that

1D <y - B> 2«lly - FRIIERN = § «d Iy - Fx

for all Le Wt . Let Le @ correspond to X, X + h by (3).
Then, bearing in mind that

(12) gE+h) - X>n- (@m+3dA) =-354,

we get from (10) - (12) that

- 350 + 3= - $5A +alhll < (% + B) - R -

(Fx - y.Ih _—
- i (x- MIEN = («-0)3 &,
%J'A < %d’A .
a contradiction.,

It remains to investigate the second case, that is
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m = ||Fx° -yl . It is easy to check that (9) also holds for
x = x,, all heB(xo,r) and corresponding L € 770 . Thus we
get
g(xy + h) = ¢(x)) - %—-—ﬁ - kine

IFx, -yl

[ 2{5; (F+ L) Ik + 2] nl,

Let J,¢ (O,r) be so small that =

{?(y»f L) o y< e = 23 = kK.

Then, recalling that ¢ (x, + h)2 ‘:?(xo)v we get from the last
two inequalities that
{Lh,Fx, - y>

<l
lFxy, = ¥ I

whenever O4 heB(0, d;) and L corresponds to X,y X, + h by
(3). Following (2) there is Ofh & B(0, o) such that

<y - Fxg,Ih? Z wlly - Fx llhoﬂ
for all L € 7L . Combining the last two inequalities we get:
that «llhll <l hl, a contradiction.
Thus, provided that (4) holds, we have obtained in both
cases, that is m<lIFx, - yll and m = [Fx, - y |, a contradic-

tion. Whence it follows that

inf {lIFx - yl lxeB(xo,rﬂ =0, i.e., ye F(B(x_,r)).
‘ Q.E.D.

Discussion. The condition (2) looks somewhat curiously.
Its sense is clarified in the following proposition. We show
there that (2) means that the set €6 Ml consists of "uniform-

ly" open mappings, or that the set of adjoint mappings
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(66 M1)* = {L*| Ledo W3

is "uniformly " injective. It should be noted that a condi-

tion similar to (2) can be found in Clarke [1, Lemma 3].

Proposition 1. Let X, Y be real Hilbert spaces, oc > O
and M c £L(X,Y). Then the following three assertions are
equivalent each to other:

(1) VyeY 304xeX VLe W <y,lx>Zalyllxl

(i1) VyeY vLie&mM ITyl2 liyl

(iii1) VYyeY VLeco® IxeX Ix=y&lylzeclxl.
Proof: (i) =2 (ii). (i) obviously remains true if L

is replaced by ¢ 9% . That is, to each ye Y there is O %
# x€ X such that {y,Lx>Z ecllyll l[x|| whenever Le &5 9L . Hence

H*yl ix I 2 <I*y,x> =<y, Lx> 2 ol yll x|l

amnd, dividing it by lix| %0, (ii) follows.

(ii) = (i). The proof is similar to that of [1, Lemma
3]. Fix yeY. Since the case y = 0 is trivial, we may assume
¥+0 in the sequel. The set

((86 WL)*)y = {I*y | Le o M 3

is convex and, by (ii), is disjoint with B(0, clyll). Hence,
owing to the theorem on separation of two convex sets Le,
3.4 Theorem], there is O% xe X such that
hxllliyl = sup {<x,v> | veB(O,xhyl)} £ inf{<x,v>|v ¢ ((SoBL*)y}.
Whence it follows

lxl iyl £ <¥y, x> =<y, 1x)

whenever L ¢ % as (i) asserts.

(ii) = (iii). Fix Le€ 9 . We remark that R(L¥) =
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= N(L)'LT_G, 12.10 Theorem]. But (i) ensures that R(I*) is

closed. Hence X = R(L*) ® N(L). Take O4 x € R(L¥) arbitrari-

ly. Then x = I¥y for some ye Y and so, by (ii),

«lxl? =o{ By, x> =aly,lx) £ liylilx) Il ¥yl N1xl =
=llxl lzx ||

and, cancelling it by [[xll+0, we get

(13) VxeR(LY) «wlxl&lxl.

It follows that L maps the closed subspace R(L*) of X onto

a closed subspace of Y. On the other hand we always have
R(L) = L(X) = LIN(LYY) = L(R(L*)).

Hence R(L) is closed in Y. Finally, as R(L) = N(I¥)t fe,
12.10 Theorem] and N(L¥) = {0} ny (ii), we infer that R(L)

= Y. Let now ye Y be given. There is x e R(L*) such that ILx

=y and (13) completes the proof of (iii).

(iii) = (ii). Let ye Y, LeCo 7L . We may assume y #0.
By (iii), there is O4xe€ X such that Ix = y and lyll z <l x|.
Hence

Uxl Iy U2 <x, *y> = <Ix,y> = (ylPZ ol x ) Uy,
¥yl 2 ol yll.
Q.E.D.
If F(B(x,,r)) is closed, then our result becomes an in-

terior mapping theorem. Let us formulate some additional con-

ditions satisfying F(BZxo,r)) to be closed.

Proposition 2. F(leo,r)) is closed if one of the fol=-
lowing conditions is fulfilled:

(i) X is complete (i.e., Hilbert) and there is J > O so
that
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(14) V x, xeB(x,,r) IFx - FxlIl=dlx - xI -

(ii) X is complete and each L € 2 is injective (and hence
an isomorphism thanks to Proposition 1)

(iii) F = AId + K, where A e R and K is a compact mapping
(iv) dim X<+ 00 (and hence dim Y<dim X owing to Proposi-
tion 1).

Proof: (i) is obvious. (ii). Let x, iem and
take a corresponding L by (3). As L is injective, we have from
Proposition 1 (iii) that
IFx - Fxl Z IL(X - x)Il - IFX - Fx - L(% - I Z (¢ = R)IX - xll.
Now (i) can be used. (iii), The case A = O is obvious. If
A #+ 0, see [2, III, 5 Proposition] for instance. (iv) fol-

lows from (iii) at once. Q.E.D.

It should be noted that, if (14) is satisfied for some
Jd > 0, then there exists a simpler proof of Theorem 1. Na-
mely, we can use the functional ¢(x) = lly - F‘x|\2, which has
no penalty member.

The case (iv) in the above proposition leads to the theo-
rem of Pourciau. Let us show it. As the set 9F(xo) is com-
pact in the space ¥ (R™,R™), and surjective, there exists

€ > 0 so that each L belonging to the set
WM=4{LeL(R",R™)| 3LedF(x,) WL-Tlses}

is still surjective. Since the multivalued mapping A F is

upper semicontinuous [5, Proposition 4.1], there exists r>0
such that 9F(x) c # whenever xe¢ B_(?:;_,IT). We note that WL
is closed and convex. Hence, by [5, Theorem 3.1, Proposition

3.2], to each x, Xe¢ B(x,,r), there is Le # so that
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FX - Fx = L(X - x).

Thus (3) is satisfied with (= 0. (1) holds with some > >

>0 because F is a Lipschitzian mapping. Finally 77! is con-

vex compact since so is aF(xo), and each L ¢ 7L is surjec-

tive, i.e., each L* is injective. It follows there exists

& > 0 so that the assertion (ii) in Proposition 1 holds.

Thus Proposition 1 yields (2), We have verified all the as-

sumptions of Theorem 1 and so, together with Propositionm 2

(iv), we get that Fx, lies in int R(F).
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