

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log34

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20,2 (1979)

CONCERNING INTERIOR MAPPING THEOREM Marián FABIAN

Abstract: Let X, Y be real normed linear spaces with scalar product and $F:B(x_0,r)\longrightarrow Y$ be a Lipschitzian mapping which can be approximated by a family of linear, continuous, "uniformly" open mappings with a certain accuracy. Then it is proved that Fx_0 lies in int $\overline{R(F)}$, see Theorem 1. Furthermore, additional conditions satisfying $Fx_0 \in$ int R(F) are discussed. The proof of the quoted result is carried out by developing of the method of Pourciau I5, Section 91, where the finitely dimensional case is considered.

 $\underline{\text{Key words}}$: Space with scalar product, Lipschitzian mapping, convex closed set, interior(of the closure) of range, interior mapping theorem.

AMS: 58C15 47H99

Introduction. The well known interior mapping theorem, due to Graves [3, Theorem 1], asserts that $Fx_0 \in \text{int } R(F)$ if the mapping $F:X\longrightarrow Y$ does not differ much from a linear, continuous, open mapping L near x_0 and X is complete. Recently Pourciau [5] obtained the same conclusion provided that X and Y are finitely dimensional and the only mapping L is replaced by a family of linear, surjective (i.e., open) mappings. His result reads as follows:

Theorem (Pourciau [5, Theorem 6.1]). Let $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, $m \leq n$, be a Lipschitzian mapping, $x_0 \in \text{int D}(F)$, and let the Clarke subdifferential (cf. [1, Definition 1], [4, Section 2])

 $\begin{array}{l} \partial \, F(x_0) \, = \, \operatorname{co} \, \{ \lim_{k \to \infty} \, \operatorname{d} F(x_k) \, \big| \, \, x_k \longrightarrow x_0, \, \, \operatorname{d} F(x_k) \, \, \operatorname{exist} \, \} \\ \\ \text{be surjective, i.e., each } L \, \epsilon \, \partial \, F(x_0) \, \operatorname{is surjective.} \\ \\ \text{Then } \, Fx_0 \, \epsilon \, \operatorname{int} \, R(F). \end{array}$

It should be noted that, in the case m = n, the above result is contained in Clarke's inverse function theorem [1, Theorem 1].

The aim of this note is to extend, as long as we are able, the Pourciau theorem to infinitely dimensional spaces, see Theorem 1. In the proof we follow [5, Section 9], where a penalty functional technique is used. But some difficulties are to be avoided in our situation. Namely, in [5, Section 9], the Clarke subdifferential of some nonnegative continuous functional at a point of its minimum is computed with help of the chain rule [5, Proposition 4.8]. However, in our case no kind of differentiability is assumed and hence no chain rule is available. Moreover, in an infinitely dimensional space, it may happen that a functional on a closed ball attains minimum in no point.

The obtained result is, unfortunately, somewhat weaker than what we would wish. That is we get that $Fx_0 \in \operatorname{int} \overline{R(F)}$ only. In the last section there are given some additional conditions under which our result becomes an interior mapping theorem, i.e., $Fx_0 \in \operatorname{int} R(F)$.

Also the sense of the condition (2) is explained in this section.

Result. Let X, Y be real normed linear spaces with scalar products $\langle .,. \rangle$ and corresponding norms $\|\cdot\|$, i.e., $\langle u,u \rangle = \|u\|^2$. $B(x_0,r)$ stands for the open ball of centre $x_0 \in X$ and radius r > 0. The closure of a set $M \subset X$ is denoted by \overline{M} , the closed convex hull of M by \overline{CO} M. M^{\perp} stands for the set

 $\{x \in X \mid \langle x, m \rangle = 0 \text{ for all } m \in M \}$

Given a mapping $F:X\longrightarrow Y$, its domain and range are denoted by D(F) and R(F) respectively. The space of all continuous, linear mappings $L:X\longrightarrow Y$, with D(L)=X, endowed with the usual linear structure and norm is denoted by $\pounds(X,Y)$. The norm $\|L\|$ of $L\in \pounds(X,Y)$ is defined by

$$||L|| = \sup \{ ||Lx|| \mid ||x|| = 1 \}.$$

L* means the adjoint mapping to L, N(L) is the space of all $x \in X$ satisfying Lx = 0. \mathbb{R}^n stands for the n-dimensional Euclidean space.

Theorem 1. Let X, Y be real normed linear spaces with scalar products and $F:X\longrightarrow Y$ be a mapping with $\overline{B(x_p,r)}\subset D(F)$ for some $x_0\in X$ and some r>0. Assume that there are numbers $\alpha>0$, $\beta\in [0,\frac{\alpha}{2})$, $\gamma>0$, and a set $\mathfrak{M}\subset \mathcal{L}(X,Y)$ such that the following three conditions are satisfied:

- (1) $\forall x, \overline{x} \in \overline{B(x_0, r)} \quad \| F\overline{x} Fx \| \leq \gamma \| \overline{x} x \|,$
- (2) $\forall y \in Y \exists 0 \neq x \in X \quad \forall L \in \Re (y, Lx) \ge \alpha ||y|| ||x||,$
- (3) $\forall x, \overline{x} \in \overline{B(x_0, r)}$ $\exists L \in \mathcal{M}$ $\| F\overline{x} Fx L(\overline{x} x) \| \leq \beta \| \overline{x} x \|$.

Then $Fx_0 \in int \overline{R(F)}$; more precisely,

$$B(Fx_0, (\frac{\alpha}{2} - \beta)r) \subset \overline{F(\overline{B(x_0,r)})}$$
.

Proof: Fix $y \in B(Fx_0, (\frac{\alpha}{2} - \beta)r)$, $y \neq Fx_0$, arbitrarily. We shall argue by contradiction, that is, let there be $\rho > 0$ such that

(4)
$$\forall x \in \widehat{B(x_0, r)} \parallel Fx - y \parallel \ge \rho > 0.$$

We shall consider the following functional

$$g(x) = \|Fx - y\| + k \|x - x_0\|, x \in \widehat{B(x_0, r)},$$

where

(5)
$$k = \frac{2}{r} \| F_{x_0} - y \|$$
.

(We note that the member $k\parallel x-x_0\parallel$ plays the role of a "penalty".) Denote

$$m = \inf \{ \varphi(x) \mid x \in \overline{B(x_0, r)} \}.$$

At this point the proof splits into two cases. First let us assume that

(6)
$$m < \| Fx_0 - y \| \left[= \varphi(x_0) \right].$$

We remark that $k < \infty - 2\beta$ for $\|Fx_0 - y\| < (\frac{\alpha C}{2} - \beta)r$. Choose

(7)
$$\Delta \in (0, \infty - 2\beta - k) \cap (0, \frac{1}{2}(\|Fx_0 - y\| - m))$$

and denote

$$M = \{x \in \overline{B(x_0, r)} \mid \varphi(x) < m + \Delta \}.$$

We claim

(8)
$$\operatorname{Mc}\{x \in B(x_0, \frac{r}{2}) \mid ||x - x_0|| > \frac{\Delta}{2^{r} - k}\}.$$

(In the sequel we shall show that $\gamma - k > 0$.) Indeed, let $x \in M$. If $||x - x_0|| \ge \frac{r}{2}$, it would then follow by (4),(5) and (7) that

$$\begin{split} \Delta + m > \varphi(x) &= \| \operatorname{Fx} - y \| + k \| x - x_0 \| > k \| x - x_0 \| \ge k \frac{r}{2} = \\ &= \| \operatorname{Fx}_0 - y \| > 2\Delta + m, \end{split}$$

a contradiction. Hence $x \in B(x_0, \frac{r}{2})$. Also, (1) and (7) yield $\Delta + m > \|Fx - y\| + k \|x - x_0\| \ge \|Fx_0 - y\| - \|Fx - Fx_0\| + k \|x - x_0\| \ge \|Fx_0 - y\| - (\gamma - k) \|x - x_0\| > 2\Delta + m - (\gamma - k) \|x - x_0\| > \Delta$,

which completes the proof of (8). The last inequality also shows that $\chi > k$.

Fix $x \in M$ and $h \in B(0, \frac{r}{2})$. By (8), $x + h \in B(x_0, r)$. We shall approximate the difference $\varphi(x + h) - \varphi(x)$ with help of some linear mapping. For brevity put

$$a = Fx - y$$
, $b = F(x + h) - y$

and choose some $L \in \mathcal{M}$ which corresponds to x, x + h by (3). Then (1),(3) and (4) yield

$$\|b\| - \|a\| - \frac{\langle Ih, a \rangle}{\|a\|} = \frac{1}{\|a\| + \|b\|} (\|b - a\|^2 + 2\langle b - a - Ih, a \rangle) +$$

$$+ \langle Ih, a \rangle \frac{\|a\| - \|b\|}{\|a\| \|a\| + \|b\|} \le \frac{1}{\|a\| + \|b\|} (\gamma^2 \|h\|^2 + 2\beta \|h\| \|a\|) +$$

+
$$\|L\|\|h\| \frac{\gamma\|h\|}{\|a\|+\|b\|} \le \frac{\gamma}{20} (\gamma + \|L\|)\|h\|^2 + 2\beta\|h\|,$$

$$\|F(x + h) - y\| - \|Fx - y\| - \frac{\langle Ih, Fx - y \rangle}{\|Fx - y\|} \le$$
(9)

$$\leq \frac{\gamma^{\nu}}{20} (\gamma + \| \mathbf{L} \|) \| \mathbf{n} \|^2 + 2\beta \| \mathbf{n} \|.$$

Similarly, as $\|\mathbf{x} - \mathbf{x}_0\| > \frac{\Delta}{2^{r-k}}$ owing to (8), we have

$$\|x + h - x_0\| - \|x - x_0\| - \frac{\langle h, x - x_0 \rangle}{\|x - x_0\|} = \frac{\|h\|^2}{\|x + h - x_0\| + \|x - x_0\|} +$$

$$+\frac{\langle h, x-x_{0}\rangle}{\|x-x_{0}\|} \cdot \frac{\|x-x_{0}\| - \|x+h-x_{0}\|}{\|x+h-x_{0}\| + \|x-x_{0}\|} \neq \frac{2\|h\|^{2}}{\|x-x_{0}\|} \neq 2\frac{2^{r-k}}{\Delta}\|h\|^{2}.$$

Thus, adding the last two inequalities, we get

$$\begin{split} & \varphi(\mathbf{x} + \mathbf{h}) - \varphi(\mathbf{x}) - \frac{\langle \mathbf{L}\mathbf{h}, \mathbf{F}\mathbf{x} - \mathbf{y} \rangle}{\|\mathbf{F}\mathbf{x} - \mathbf{y}\|} - \mathbf{k} \frac{\langle \mathbf{h}, \mathbf{x} - \mathbf{x}_0 \rangle}{\|\mathbf{x} - \mathbf{x}_0\|} \leq \\ & \leq \left[\left(\frac{\mathcal{T}^2}{2\varphi} + \frac{2^{\mathbf{r}}\|\mathbf{L}\|}{2\varphi} + 2 \frac{2^{\mathbf{r}} - \mathbf{k}}{\Delta} \right) \|\mathbf{h}\| + 2\beta \right] \|\mathbf{h}\|. \end{split}$$

Furthermore there is (see (7)) $\delta \in (0,\frac{\mathbf{r}}{2})$ such that

$$\left(\frac{\mathcal{Z}^2}{2\wp} + \frac{\mathcal{Z}^{\parallel} \perp \parallel}{2\wp} + 2\frac{\mathcal{Z}^{\perp} \cdot k}{\Delta}\right) \, \sigma < \infty \, -\Delta \, -\, 2\beta \, -\, k.$$

Thus we get that

(10)
$$g(x + h) - g(x) - \frac{\langle Lh, Fx - y \rangle}{\|Fx - y\|} \leq (\alpha - \Delta) \|h\|$$

whenever $x \in M$, $h \in B(0, \sigma')$ and L corresponds to x, x + h by (3).

Now let $\overline{x} \in M$ be such that $\varphi(\overline{x}) < m + \frac{1}{2} \delta \tilde{\Delta}$. By (2), there is $\overline{h} \in X$, $\|\overline{h}\| = \frac{3}{4} \delta \tilde{\Delta}$, such that

(11)
$$\langle y - F\bar{x}, I\bar{h} \rangle \ge \infty ||y - F\bar{x}|| ||\bar{h}|| = \frac{3}{4} \propto \delta' ||y - F\bar{x}||$$

for all L ϵ ${\mathfrak M}$. Let \bar{L} ϵ ${\mathfrak M}$ correspond to \bar{x} , \bar{x} + \bar{h} by (3). Then, bearing in mind that

(12)
$$\varphi(\bar{x} + \bar{h}) - \varphi(\bar{x}) > m - (m + \frac{1}{2} \delta \Delta) = -\frac{1}{2} \delta \Delta$$
, we get from (10) - (12) that

$$-\frac{1}{2}\delta\Delta + \frac{3}{4}\alpha\sigma' = -\frac{1}{2}\delta\Delta + \alpha\|\bar{\mathbf{h}}\| < \varphi(\bar{\mathbf{x}} + \bar{\mathbf{h}}) - \varphi(\bar{\mathbf{x}}) - \frac{\langle F\bar{\mathbf{x}} - \mathbf{y}, \bar{\mathbf{h}} \rangle}{\|F\bar{\mathbf{x}} - \mathbf{y}\|} \le (\alpha - \Delta)\|\bar{\mathbf{h}}\| = (\alpha - \Delta)\frac{3}{4}\sigma',$$

$$\frac{3}{4}\delta\Delta < \frac{1}{2}\delta\Delta,$$

a contradiction.

It remains to investigate the second case, that is

 $m = \|Fx_0 - y\|$. It is easy to check that (9) also holds for $x = x_0$, all $h \in B(x_0, r)$ and corresponding $L \in \mathcal{M}$. Thus we get

$$g(x_0 + h) - g(x_0) - \frac{\langle Lh, Fx_0 - y \rangle}{\|Fx_0 - y\|} - k\|h\| \le \left[\frac{2^r}{20} (\gamma + \|L\|) \|h\| + 2\beta \right] \|h\|.$$

Let $\mathcal{S}_0 \in (0,r)$ be so small that

$$\frac{3r}{2\phi}(\gamma + \| L\|) \sigma_0^r < \infty - 2\beta - k$$
.

Then, recalling that $\varphi(x_0 + h) \ge \varphi(x_0)$, we get from the last two inequalities that

$$-\frac{\langle Lh, Fx_0 - y \rangle}{\|Fx_0 - y\|} < \alpha \|h\|$$

whenever $0 \neq h \in B(0, \sigma'_0)$ and L corresponds to $x_0, x_0 + h$ by (3). Following (2) there is $0 \neq h_0 \in B(0, \sigma'_0)$ such that

$$\langle y - Fx_0, Lh_0 \rangle \ge \infty ||y - Fx_0|| ||h_0||$$

for all L \in Mt . Combining the last two inequalities we get that $\|h_0\| < \infty \|h_0\|$, a contradiction.

Thus, provided that (4) holds, we have obtained in both cases, that is $m < \| Fx_0 - y \|$ and $m = \| Fx_0 - y \|$, a contradiction. Whence it follows that

inf {
$$\|\mathbf{F}\mathbf{x} - \mathbf{y}\| \mid \mathbf{x} \in \overline{B(\mathbf{x}_0, \mathbf{r})}$$
} = 0, i.e., $\mathbf{y} \in \overline{F(\overline{B(\mathbf{x}_0, \mathbf{r})})}$.

<u>Discussion</u>. The condition (2) looks somewhat curiously. Its sense is clarified in the following proposition. We show there that (2) means that the set \overline{co} \mathcal{M} consists of "uniformly" open mappings, or that the set of adjoint mappings

is "uniformly" injective. It should be noted that a condition similar to (2) can be found in Clarke [1, Lemma 3].

<u>Proposition 1</u>. Let X, Y be real Hilbert spaces, $\alpha > 0$ and $\mathcal{M} \subset \mathcal{L}(X,Y)$. Then the following three assertions are equivalent each to other:

- (i) $\forall y \in Y \exists 0 \neq x \in X \quad \forall L \in \mathcal{M} \quad \langle y, Lx \rangle \geq \alpha \|y\| \|x\|$
- (ii) $\forall y \in Y \ \forall L \in \overline{co} \ \mathcal{M} \ \| L^*y \| \ge \infty \| y \|$
- (iii) $\forall y \in Y \quad \forall L \in \overline{co} \mathcal{M} \quad \exists x \in X \quad Lx = y \& ||y|| \ge \infty ||x||.$

Proof: (i) \Longrightarrow (ii). (i) obviously remains true if \mathcal{M} is replaced by $\overline{\text{co}}\ \mathcal{M}$. That is, to each $y\in Y$ there is $0 \neq x\in X$ such that $\langle y, Lx\rangle \geq \alpha \|y\| \|x\|$ whenever $L\in \overline{\text{co}}\ \mathcal{M}$. Hence

$$\parallel L^{*}y \parallel \ \parallel x \parallel \ \ge \ \langle \ L^{*}y \,, x \rangle = \langle y \,, Lx \, \rangle \ \ge \ \infty \| \ y \| \ \| x \, \|$$

and, dividing it by $||x|| \neq 0$, (ii) follows.

(ii) \Longrightarrow (i). The proof is similar to that of [1, Lemma 3]. Fix $y \in Y$. Since the case y = 0 is trivial, we may assume $y \neq 0$ in the sequel. The set

is convex and, by (ii), is disjoint with B(0, ∞ |y|). Hence, owing to the theorem on separation of two convex sets [6, 3.4 Theorem], there is $0 \neq x \in X$ such that $\infty \|x\| \|y\| = \sup \{\langle x, v \rangle \mid v \in B(0, \infty \|y\|)\} \leq \inf \{\langle x, v \rangle \mid v \in ((\overline{co}\mathcal{M})^*)y\}$. Whence it follows

$$\propto ||x|| ||y|| \le \langle L^*y, x \rangle = \langle y, Lx \rangle$$

whenever L & M as (i) asserts.

(ii) \Longrightarrow (iii). Fix Le \overline{co} \mathfrak{M} . We remark that $\overline{R(L^*)}$ =

= N(L) $^{\perp}$ [6, 12.10 Theorem]. But (i) ensures that R(L*) is closed. Hence X = R(L*) \oplus N(L). Take $0 + x \in R(L^*)$ arbitrarily. Then x = L*y for some y \in Y and so, by (ii), $\alpha \|x\|^2 = \alpha \langle L^*y, x \rangle = \alpha \langle y, Lx \rangle \leq \alpha \|y\| \|Lx\| \leq \|L^*y\| \|Lx\| = \|x\| \|Lx\|$

and, cancelling it by $||x|| \neq 0$, we get

$$\forall x \in R(L^*) \quad \alpha ||x|| \leq ||Lx||.$$

It follows that L maps the closed subspace $R(L^*)$ of X onto a closed subspace of Y. On the other hand we always have

$$R(L) = L(X) = L(N(L)^{\perp}) = L(R(L^*)).$$

Hence R(L) is closed in Y. Finally, as $\overline{R(L)} = N(L^*)^{\perp}$ [6, 12.10 Theorem] and N(L*) = {0} by (ii), we infer that R(L) = Y. Let now $y \in Y$ be given. There is $x \in R(L^*)$ such that Lx = y and (13) completes the proof of (iii).

(iii) \Longrightarrow (iii). Let yeY, Leco \mathcal{M} . We may assume y \neq 0. By (iii), there is $0 \neq x \in X$ such that Lx = y and $\|y\| \geq \infty \|x\|$. Hence

$$\|x\| \|L^*y\| \ge \langle x, L^*y \rangle = \langle Lx, y \rangle = \|y\|^2 \ge \infty \|x\| \|y\|,$$

 $\|L^*y\| \ge \infty \|y\|.$

Q.E.D.

If $F(\overline{B(x_0,r)})$ is closed, then our result becomes an interior mapping theorem. Let us formulate some additional conditions satisfying $F(\overline{B(x_0,r)})$ to be closed.

<u>Proposition 2.</u> $F(\overline{B(x_0,r)})$ is closed if one of the following conditions is fulfilled:

(i) X is complete (i.e., Hilbert) and there is $\delta > 0$ so that

- (14) $\forall x, \bar{x} \in \overline{B(x_0, r)} \| F\bar{x} Fx \| \ge \sigma \| \bar{x} x \|$.
- (ii) X is complete and each $L \in \mathcal{M}$ is injective (and hence an isomorphism thanks to Proposition 1)
- (iii) F = A Id + K, where $A \in \mathbb{R}$ and K is a compact mapping (iv) dim $X < + \infty$ (and hence dim $Y \le \dim X$ owing to Proposition 1).

Proof: (i) is obvious. (ii). Let x, $\overline{x} \in \overline{B(x_0, r)}$ and take a corresponding L by (3). As L is injective, we have from Proposition 1 (iii) that

Now (i) can be used. (iii). The case $\lambda = 0$ is obvious. If $\lambda \neq 0$, see [2, III, 5 Proposition] for instance. (iv) follows from (iii) at once. Q.E.D.

It should be noted that, if (14) is satisfied for some $\sigma > 0$, then there exists a simpler proof of Theorem 1. Namely, we can use the functional $\varphi(x) = \|y - Fx\|^2$, which has no penalty member.

The case (iv) in the above proposition leads to the theorem of Pourciau. Let us show it. As the set $\partial F(x_0)$ is compact in the space $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, and surjective, there exists $\epsilon > 0$ so that each L belonging to the set

 $\mathcal{M} = \{ L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \mid \exists \overline{L} \in \partial F(x_0) \mid |L - \overline{L}| | \leq \epsilon \}$ is still surjective. Since the multivalued mapping ∂F is upper semicontinuous [5, Proposition 4.1], there exists r > 0 such that $\partial F(x) \subset \mathcal{M}$ whenever $x \in \overline{B(x_0, r)}$. We note that \mathcal{M} is closed and convex. Hence, by [5, Theorem 3.1, Proposition 3.2], to each $x, \overline{x} \in \overline{B(x_0, r)}$, there is $L \in \mathcal{M}$ so that

$F\bar{x} - Fx = L(\bar{x} - x)$.

Thus (3) is satisfied with $\beta = 0$. (1) holds with some $\gamma > 0$ because F is a Lipschitzian mapping. Finally \mathcal{M} is convex compact since so is $\partial F(x_0)$, and each L ϵ \mathcal{M} is surjective, i.e., each L* is injective. It follows there exists $\alpha > 0$ so that the assertion (ii) in Proposition 1 holds. Thus Proposition 1 yields (2), We have verified all the assumptions of Theorem 1 and so, together with Proposition 2 (iv), we get that Fx_0 lies in int R(F).

References

- [1] F.H. CLARKE: On the inverse function theorem, Pacific J. Math. 64(1976), 97-102.
- [2] A. GRANAS: The theory of compact vector fields and some applications to topology of functional spaces (I), Rozprawy Matematyczne 30(1962), 1-93.
- [3] L.M. GRAVES: Some mapping theorems, Duke Math. J. 17 (1950), 111-114.
- [4] Г.Г. МАГАРИЛ ИЛЬЯЕВ: Теорема о неявной функции для липшицевых отображений, Успехи мат. наук 33 (1978), 221-222.
- [5] B.H. POURCIAU: Analysis and optimization of Lipschitz continuous mappings, J. Opt. Theory Appl. 22(1977), 311-351.
- [6] W. RUDIN: Functional analysis, McGraw-Hill, New York, 1973.
- [7] W. RUDIN: Principles of mathematical analysis, McGraw-Hill, New York, 1964.
- [8] S. YAMAMURO: Differential calculus in topological linear spaces, Lecture Notes in Mathematics 374, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

Ústav výpočtové techniky ČVUT Horská 3, 12800 Praha 2 Československo

(Oblatum 6.2. 1979)