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Abstract: M.L. Teply in {12] calls a torsion theory (7, F)
pseudchereditary, if every submodule of T (R) is T’ -torslon.
In this paper, pseudohereditary preradicals together with the

related dual problems are studied.
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Throughout this paper, R stands for an associative ring
with unit element and R-mod denotes the category of all unita-
ry left R-modules. The injective hull of a module M will be
denoted by E(M), the direct product (sum) by ‘.12'1 Ny ( ?Z? M)
A submodule N of M is called essential (superfluous) in M, if
KAN = 0 implies K= 0 (K + N = I implies K = M) for every sub-
module K of M. If 0 —» A i—> B 2—; C—> 0 is a short exact se-
quence of R-module s, then we shall say that B is an envelope
of A (B is a cover of ), if f(A) is essential in B (£(a) is
superfluous in B). A ring is called left perfect, if every mo-

dule has a projective ccver.

We start with some basic definiticns from the theory of



preradicals (for details see [1]1,[2] ami [3]).

A preradical r for R-mod is a subfunctor of the iden-
tity functor, i.e. r assigns to each module M its submodule
r(M) in such a way that every homomorphism of M into N in-
duces a homomorphism of r(M) into r(N) by restriction.

A preradical r is said to be
- idempotent if r(r(M)) = r(M) for every module M,

- a radical if r(M/r(M)) = O for every module M,

- hereditary if r(N) = Nar(M) for every submodule N of a
module M,

- cohereditary if r(M/N) = (r(M) + N)/N for every submodule
N of a module M,

- faithful if r(M) = O for every pr¢ jective module M,

- cofaithful if r(M) = M for every injective module M,

As it is easy to see a preradical r is faithful if and
only if r(R) = 0 and r is cofaithful if and only if r(E(R)) =
= E(R). A module M is r-torsion if r(M) = M and r-torsionfree
if r(M) = 0. We shall denote by J', ( F,.) the class of all
r-torsion (r-torsionfx"ee) modules. If r and s are preradicals
then we write r<s if r(M)c s(M) for all M e R-mod. The idem-
potent core ¥ of a preradical r is defined by T(M) = = K,
where K runs through all r-torsion submodules K of M, and the
radical closure T is defined Y T(M) = /1 L, where L runs
through all sulbmodules L of M with M/L r-torsionfree. Fur-
ther, the hereditary closure h(r) is defined by h(r)(M) =

Mn r(E(M)) and the cohereditary core ch(r) by ch(r)(M) =

"

r(R) M. The intersection (sum) of a family of preradicals

r;,ieI is a preradical defined by (191 r;) (M) ’401 r; (M)

((.=. r.)(M) =, = r.(M)). For a preradical r and modules
i S § i1 71
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NeM let us define Cp(N:M) by C.(N:M)/N = r(M/N). For an ar-
bitrary class of R-modules (, we define Pp,(N) ==Inf, ¢
ranging over all fe HomR(M,N), M ed and pa' (N) =N Ker £, £
ranging over all fe HomR(N,M), Med . It is easy to see that
Pg is an idempotent preradical (pa’ is a radical). Moreover,
if M is an injective (projective) module, then pmi is here-
ditary (pm}is cohereditary). Further, M is a faithful module
if and only if p{ldi is faithful. Dually, M is a cofaithful mo-
dule if and only if Pyn} is cofaithful.

§ 1. Pseudohereditary preradicals

Definition 1.1. A preradical r is said to be pseudohere-

), :
ditary if every submodule of r(R)uis r-torsion for every finite
index set I.

Proposition 1.2. Let r be a preradical, Then the follow-

ing are equivalent:

(i) r is pseudohereditary,

(ii) Neeh(r)(M) implies N « Tr for every submodule N of a
module M,

(iii) r(N)= ch(r)(M) implies r(N) = Nach(r)(M) for every sub-
module N of a module M.

Proof: (i) implies (ii). Let M¢ R-mod and N<ch(r)(M).
There is an epimorphism f:F—> M with F free. Consider the epi-
morphism f:r(F)—» ch(r)(M) induced by f. By (1) Tl e Py
and hence N = F(2"1(N)) e Tre

(ii) implies (iii). If M ¢ R-mod, NEM such that r(N)
€ ch(r)(M) then r(N)E ch(r)(M)n N. By (ii) K = ch(r)(M)n He‘T’r
and hence ch(r)(M)n NEr(N).

(iii) implies (i). If K& r(R)mthen clearly r(K)Ech(r) (k)
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and (iii) yields r(K) = ch(r) (R(I))r\K = K.

Proposition 1.3. ILet r be a preradical. Then
(i) if r is pseudohereditary, then F ¢ ¥, implies E(F) €
€ 6.ch(r)'
(ii) if r is a radical and F e F, implies E(F) e ﬁch(r) for
every module F, then r is pseudohereditary.

Proof: (i). Let Fe F .. Since r is pseudohereditary,
we have K = Fach(r) (E(F))e T,. Thus K = O and ch(r)(E(F)) =
= 0,

(ii) Let Mc R-mod and N&ch(r)(M). Consider the follow-
ing commutative diagram

Nr () T o en(r )W) /r(N)

f ¥D

E(N/r(N))

Now r is a radical and N/r(N) € ?r implies E(N/r(N))e $ch(r)'
On the other hand N/r(N) = h(N/r(N))<Sh(ch(r)(M)/r(N)) =

= h(ch(r) (M/r(N)))e chir) (E(N/r(N))) = O, Thus Ne¢ J}.

Proposition 1.4.

(i) Every hereditary preradical is pseudohereditary.

(ii) Every faithful preradical is pseudohereditary.

(iii) If r is a cohereditary preradical, then r is pseudo-
hereditary if and only if r is hereditary. ‘
(iv) If ch(r) is hereditary, then r is pseudohereditary.
(v) If R is left hereditary, then r is pseudohereditary im-
plies ch(r) is so.

(vi) If ry, i¢I is a family of preradicals, theni("k ry
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is pseudohereditary provided each ry is so.
(vii) If r is a preradical, then /){s,r<s, s pseudchere-
ditary preradical} (N { s,r<s, s pseudohereditary radical})
is the least pseudohereditary preradical (pseudohereditary
radical) containing r.
(viii) If r is pseudohereditary, then T is so.

Proof follows immediately from Definition 1.1 and Propo-
sition 1.2.

The next propocsition is a medification of the well known

result for hereditary radicals (see Jams [5]).

Proposition 1.5. Let r be a pseudohereditary radical.
Then there is an injective ch(r)-torsionfree module Q such that

ch(r) = ch(p'®,
Proof: It is enough to put Q =AIIL E(A), where Q is a

representative set cf cyclic r-torsionfree modules. As it is
easy to see, Q is an injective ch(r)-torsionfree module, and
therefore ch(r)fép{Q}. On the other hand it suffices tc prove

5;4Q} [ 7}. For, let Te 3;{Q§’ T & J,. Withcut loss of gene-

rality we can assume that T & F,n ﬁ'{;; (take T/r(T) instead
pﬂ
T, if necessary). Therefore T contains a nonzerc cyclic submo-
dule C isomorphic to some A € d . Hence Homq(C,Q)¢ 0 and con-
sequently C ¢ 7T . On the other side ¢ e T since p % i
p{Q} p&Q}

hereditary, a contradicition.

Corollary 1.6. Let r be a radical. Consider the following
conditions:
(1) r is pseudchereditary,

{ii) there is an injective module 4 such that (0:3) =



Then (i) implies (ii). Moreover, if R is a left hereditary
ring then (ii) implies (i).
Proof: (i) implies (ii). By Proposition 1.5.

(ii) implies (i). By Proposition 1.4 (iv),(v).

§ 2. Pseudocohereditary preradicals.

Definition 2.1. A preradical r is said to be pseudoco-
hereditary if for every module M and every epimorphism
M/h(r)(M)—>A A e F,.

Proposition 2,2. Let r be a preradical and Q be & faith-
ful injective module. Then the following are equivalent:
(i) r is pseudocohereditary,

(ii) h(r)(M)S C,(N:M) implies r(M/N) = (h(r)(M) + N)/N for
every submodule N of a module M,

(iii) If I is an arbitrary index set and QI/r(QI) —> A an
epimorphism, then Ae ¥ .

Proof: (i) implies (ii). Suppose NEM and h(r)(M) =
€ C.(N:M). Consider the natural epimorphism M/h(r) (M) —
—> M/(h(r) (M) + N),

According to (i) (M/N)/((h(r)(M) + N)/N)& M/(h(r)(M) +
+ N) e #,, and hence r(M/N)E (h(r)(M) + N)/N. The converse
inclusion is obvious.

(ii) implies (i). If M& R-mod, h(r)(M)SKEM and -
M/h(r) (M) —> M/K is a natural epimorphism, then we have
r(M/K) = (h(r)(M) + KK = 0 by (ii).

(i) implies (iii). Obvious.

(iii) implies (i), Let A, M€ R-mod and g:M/h(r)(M) —» A

be an epimorphism. There is an epimorphism f:F—> M with F
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free. Since Q is faithful piS%(F) = 0, am hence F <% ¢’
for some index set J. Further, i induces the inclusion i:
:F/h(r) (F) -—>QJ/h(r)(QJ). Now consider the push-out diagram
b
iy —— 5. ¢
2 i
%0 £

where F:F/h(r)(F)— M/h(r) (M) is an epimorphism induced by
f. As it is easy to see j is a monomorphism and h an epimor-

phism. According to (iii) C e 3'1,, and hence A€ F,.

Proposition 2.3. Iet r be a preradical. Then:
(1) if r is pseudocohereditary and 0—>K—> A—> B—> 0 is
& cover of B, then B ¢ J, implies A € Th(r)
(ii) if r is pseudocohereditary and 0 —> K< > P —> B —» 0
is an arbitrary projective presentation, then B e ’.Tr implies
h(r)(P) + K = P,
(iii) if R is left perfect, r pseudocohereditary and C(P)iﬁ
—gl> P a projective cover of P, then P e T'r implies C(P) e
€ Thirys
(iv) if R is left hereditary, r pseudocohereditary and B €
€ Tr' then there is a projective presentation 0—» K — P —>
—> B—>0 with Pe¢ :’r"h(r),
(v) if r is an idempotent preradical such that for each B e
€ ffr there is a projective presentation 0 —> K< P —» B—>
—> O with P = K + h(r)(P), then r is pseudocohereditary.
Proof: (i). If 0—> K< A—>B—> 0 is a cover of B
and Be U'r, then A/K = r(A/K) = (h(r)(A) + K)/K implies & =

= h(r)(A) + K, and hence A€ yh(r)’ since K is superfluous
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in A,

(ii). This can be done in a similar fashion as in (i).

(iii). It follows immediately from (i).

(iv). Let Be T and 0o—>Kefsp &, B—>0 be an
arbitrary projective presentation. Sime r is pseudocoheredi-
tary h(r)(P) + K = P due to (ii). Now R is left Rereditary
and therefore h(r)(P) is projective. Thus h(r)(P)e “Th(r) and
g(h(r)(P)) = g(P) = B,

(v). Suppose NEM and h(r)(M)c C,(N:M) and consider the
following commutative diagram

%

0—> K¢ P-—=5 r(M/N)—> 0
+ w
Cr(N:M)

where the row is a projective presentation of r(M/N) such that
K + h(r)(P) = P and & is a natural epimorphism. Now r(M/N) =
= g(h(r)(P)) = a(f(h(r)(P)))s & (h(r)(M)‘) = (h(r) (M) + N)/N
and consequently r(M/N) = (h(r)(M) + N YN,

Proposition 2.4.
(i) Every cohereditary preradical is pseudocohereditary.
(ii) Every cofaithful preradical is pseudocohereditary.
(iii) If r is a hereditary preradical, then r is pseudocohe-
redi.tary if and only if r is cohereditary, N
(iv) If h(r) is cohereditary, then r is pseudocohereditary.
(v) If R is left hereditary, and r a pseudocohereditary pre-
radical, then h(r) is cohereditary.
(vi) If r;, i€I is a family of preradicals, then i?'l r; is

pseudocohereditary provided each Ty is so.
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(vii) If r is a preradical, then = 4s,s<r, s-pseudocohe-
reditary preradical} (= {s,s £r, s-pseudocohereditary idem-
potent preradical}) is the largest pseudocohereditary (pseu-
docohereditary idempotent) preradical contained in r.
(viii) If r is pseudocohereditary, then T is so.

Proof follows immediately from Definition 2.1 and Pro-

position 2.2.

Propcsition 2.5. Let R be either left hereditary or
left perfect and r be a pseudocohereditary idempotent preradi-
cal. Then h(r) = h(pipl) for some h(r)-torsion projective mo-
dule P.

Proof: Iet & be a representative set of cocyclic r-
torsion modules and P be the direct sum of projective h(r)-
torsion presentations of modules from (L (the existence of P
follows from Propcsition 2.3(iii),(iv)). As it is easy to
see P is a projective h(r)-torsion module, and therefore
p{pis h(r). On the other hand it suffices to show that
jp{PSE 3}. For, let F e Eb{P} and F ¢ 7,. Without loss of
generality we can assume that F e 'Trn 3'p ; (take r(F) in-
stead F, if necessary). If C is a nonzerc cocyclic factormo-
dule of F, then C=A for some A € @ . Hence Homp(P,C)4 O and
C 4 35{?]’ On the other hand C e ?p{P} since Psp} is cohere-

ditary, a contradiction.
Corollary 2.6. Let r be an idempotent preradical for R-

mod, where R is a left hereditary ring. Then the following are

equivalent:

(i) r is pseudccohereditary,
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(ii) there is a projective module P such that r(M) =

= p{P}(M) for every injective module M.

[1)

L2)

[3]

L4]

[5]

[6)

L7

L8]
L9]

[10]

[11)
[12)

Proof: (i) implies (ii). By Proposition 2.5.

(ii) implies (i). By Proposition 2.4(iv),(v).

References

L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC: Preradicals,
Comment. Math. Univ. Carolinae 15(1974), 75-83.

L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC: Hereditary and
cohereditary preradicals, Czech. Math. J. 26(1976),
192-206.

L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC: Composition of
preradicals, Comment. Math. Univ. Carolinae 15
(1974), 393-405.

J.S. GOIAN: Localization of noncommutative rings, Marcel
Dekker 1975.

J.P. JANS: Some aspect of torsion, Pacif. J. Math. 15
(1965), 1249-1259.

J. JIRESKO: Generalized injectivity, Comment., Math, Univ.
Carolinae 16(1975), 621-636.

H, JIRLSKOVK, J. JIRASKO: Generalized projectivity, Czech.
Math. J. 28(1978), 632-646.

J. JIRESKO: Generalized projectivity II (to appear).

R.W, MILLER, M.L. TEPLY: On flatness relative to a tor-
sion theory, Comm. Alg. 6(1978), 1037-1071.

K.M. RANGASWAMY: Codivisible modules, Comm. Alg. 2(1974),
475-489.

Bo STENSTROM: Rings of quotients, Springer Verlag 1975.

M.L. TEPLY: Codivisible and projective covers, Comm. Alg.
1(1974), 23-38,

- 326 -



Matematicko-fyzikdlni fakulta
Universita Karlova
Sokolovsk4 83, 18600 Praha 8

8eskoslovensko

(Oblatum 26.2. 1979)

- 327 -






	
	Article


