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BEHAVIOUR OF MACHINES IN CATEGORIES
Véra TRNKOVA

Abstract: Functorial machines in the catezory Set of
sets are introduced such thgt they include Arbib Manes ma-
chines in Set and Eilenberg s X-machines. Their behaviour
is introduced as the smallest solution of a suitable equati-
on and the coincidence of the usual notion of the behaviour
is proved.

Key words: Category, functor, relation, machine, auto-
maton, %unctorial algebra: behavioﬁr. ’

AMS: 18B20

In [E)}, S. Eilenberg introduces a notion of X-machines
and the relation computed by it. He unifies the description
of the action of two ways automata, push-down automata, Tur-
ing machines and, as he says, "the list of examples could be
continued indefinitely ([E, p. 288]}). In [AM ], M.,A. Arbib
and E.G. Manes define functorial machines in a category to
unify the description of sequential automata, tree automata
and others. In the present paper, we define functorial machi-
nes and their behaviour and show that this makas it possible
to describe the above X-machines of [E)] and Arbib Manes func-
torial machines and their action in a unified way. The smal-

lest-solution-technique is used here in a general functorial
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form. To keep the formal apparatus simple, we deal with the
category Set of all sets only. Some generalizations are sket-

ched at the end of the paper.

I. Machines and their behaviour

1. Denote by Set the category of all sets and all their
mappings amd by Rel the category of all sets and all their
(binary) relations, no matter whether a binary relation r:
:A—> B is supposed 1;0 be a mapping of A into the set of all
subsets of B or to be an ordered triple (A,C,B), where CcAx
< B or to be the ordered pair (JfA, J'{B), where JfA:c —>A,
p:C —>B are the projections; any of the three forms of the
description will be used. Moreover, if «:X— A, (3:X —B
are mappings, we denote by [o , 81 the relation
(A,§u(x), B(x))| xeX$,B).(let us indicate by A—> B a mapping
and by A—>> B a relation; e denotes the composition of map-

pings and o the composition of relations.)

2. If ry:A—>>B are relations, r; = (A,Ci,B), we defi-
ne, as usual,

riér, iff G C,,

ry + v, = (A,CqU C,,B) (more generally, ?. r, =
= (A, g ;,B),

rit = (8,c7%,0).

3. Let F:Set—> Set be a functor. A relational F-algeb-
ra is any pair (Q,d"), where Q is a set amd J":FQ —» Q is a
relation. If o is a mapping.then (Q,d”) is called only F-al-
gebra. A homomorphism h:(Q,d')—> (Q",d’) of F-algebras is
every mapping h:Q—»Q” such that ¢ + h = F(h)- J°’ . A free
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F-algebra over a set I consists of an F-algebra (I# ,_(p) and
a mapping 7 :I—>I"‘E with the following universal property:
for every F-algebra (Q,d") and every mapping i:I—> Q there

exists a unique homomorphism i¥ . ’ g;)—-)- (Q,0”) such that

7 - i#' = i. The mapping i* is called a free extension of i

(with respect to d") [AM].
A functor F:Set —» Set for which a free F-algebra exists
over any set I is called a varietor. All varietors in Set we-

re characterized in [KK].

4. Let F:Set —> Set be a functor. We extend it to a map-

ping F:Rel —» Rel by the rule
Flx,fB]= [F(ec),F(B)].

If [ty 31] =[xy 351, then [Flx,),F( $31)) = [F(,),F(3,)]
For, put {(«w(x), 31(x)) | xeX;§ =C= (e, (x), ﬁz(x))\xele
ard denote by :ITA:C——)-A, WB:C—arB the projections. Then
©+97, =005, @ Sty = ﬂi for a surjective mapping @,:
:X4—>C, i = 1,2, Since @, (9, are retractions, F(@,) and
F(@,) are also surjective. Hence [F(ety),F((31)] =
=[F(@y)« F(ary), F(,) Flarg)] =[F(ar,),Flarg)] =
=LF(@E,) F(ary),F(@,) - F(org)) = [F(es,),F( (32)3. The map-
ping F:Rel —» Rel has the following properties:

1) ‘F'(rlorz)ef'(rl)o f"(rz);

2) if ry&r,, then F(ry) £F(r,);

3 Fe™h = (Fenh
In[T,], all the functors F:Set —>Set, for which the exten-
sion f:Rel—-)Rel satisfies the stronger condition

1) 'f(rlo ry) = 'f’(rl)o F(r,)

(i.e. F is an endofunctor of Rel) are characterized. Since we
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need this in II., we recall the characterization. We say that

F:Set —» Set covers pullbacks if, for every pullbacks

BN 2N
a4 T AN A,

!
&

Q

the unique mapping @ which fulfils @- ;i = F(Ei), is=
= 1,2, is surjective.

Proposition ['1‘1]: F:Rel —> Rel is an endofunctor iff
F covers pullbacks.

5. Let F:Set —» Set be a functor. Let us denote by the
same letter F:Rel — Rel its extension as in 4.

An F-machine M| in Set consists of the following data.
Two-relational F-algebras, say

(J,%) ... called the type algebra of M and

(Q,d") ... called the state algebra of |Ml aml three re-

lations situated as follows.

o :A —> J called the input code of M,
L :J —» Q called the initiation of WM 3

¥:Q —» Y called the output of |M|.

The situation is visualized on the picture below.

W . FQ

¥ Jd

Q

5
A./ - h, Y

We write M = [&,(J,‘y),u,(Q,d’),y].
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6. The run ¥ :J—>» Q of a machine M=[cc,(J,y),L ’
(Q,d"),y ) is defined as the smallest solution of the equati-
on

X =L+ Y‘-loF(x)'od‘ .

The behaviour of M is defined by

beh M = ot o ¥ oy.

7. The run construction. Let WM =[oo,(J,y),|, '
(Q, d'),y] be an F-machine. We define by induction over all
ordinals
P, =L,
Teep =L+ ¥ loF(r ) e o,

r = = r, for oo limit ordinal.
p<x ¢

We say that the run construction stops (after 7 steps) if
Ty = r7+1. Then rf, =Ty for all 713 7 .

4
lemma. If o £o¢ , then r £ T,

Proof by induction.

Corollary. The run construction always stops, at most
after card (J»<Q) steps, no matter what the functor F is.

Proposition. If r,[ = :’;ﬂ, then Ty = ¥ is the run of
M. .

Proof. If Ty = Tpals then r, is a solution of the equa-
lor(x) o & » evidently. Let & :J —>>Q be
a relation such that 6 = L + ‘Y-lo F(@)od . Thenr 26

tion x = v + ¥~

for all ordinals o (the straightforward proof by induction
is omitted) hence L* £« 6 . Thus, L* is the smallest solu-

tion of the equation.

8. ILet Mi=(o,(J,¥),L,(Q,d),y ) be a machine.
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A reversed machine ML is defined to be ﬂy'l,(Q,d‘), o 1
J,y) Y.
Observation: run M1

S

(run M )-1.
(beh Mi )~L.

"

9. A machine M = {x, (J,¥),L,(Q,0"),y]) is called
standard if ¥ :Fd —» J is a mapping.

Propositiom. ILet Wi = Noo,(J,¥),¢,(Q,0),y] be a
standard machine. Then its run ¥ is the smallest relation

J —>> Q such that

iv

1".1,* F(l-*)°dv,

Li‘

ZL .

Proof. First, let us notice that if y :FJ —> J is a map-
ping, then yo ¥ -lz lpgs W.-l, ¥ &1,
a) The run L* is the smallest solution of the equation x =
=L+ Y loF(x)od” . Hence L¥z i and y e ¥ =
=yo (L + vyl F(Med) =yoL+y oy loF(Lr)od'2
ZF(LF) o I,
b) Let @ be a relation J—>>Q such that y © PZF(@)e o~
end @z L . We show r <« @ for all ordinals o« , by induc-
tion. Clearly L =r =« @ . If r = @ > then

o x4l
+‘V-10F(I‘$)°d'$b + ljf-laF(gb)o JL L+ 1('1, Yopi

=4 +

<
sLrp s .IfrB-ig)‘forall p< o ,then,;%“rpﬁ
£ @ . We conclude that e

Remark. In [T;1,iT,1 the run of a machine is defined as
the smallest relation which fulfils the above inequalities.
As it is proved, this coincides with our definiticn of run

for standard machines, but not in general.

10. ILet F:Set—3 Set be a varietor (see 3.). We say that
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an F-machine M = [, (J,¥), v,(Q,d),y ) is a free machine
if its input code o¢ is the identity 1 its type algebra
(J,y) is a free F-algebra over a set I and its initiatiom

L factors through [n ,II] where 7 :I—> 1* is the uni-
versal mapping of the free F-algebra (¥ @) = (J,y) (see
3.). Free machines coincide with relational automata, inves=-
tigated in l'.Tl‘l. We say that M is a_free deterministic ma-
chine if it is a free machire such that ¢”:FQ —> Q and y:

:Q —>Y are mappings and (= [-1; i1, where i:I—Q is a
mapping. Free deterministic machires coincide with the Arbib-
Manes machines in the category Set, see [AM]. The definitiom
of behaviour also coincides (in [AM], the behaviour is defi-
ned to te i¥. y:I*—) Y, where i¥ is the free extension
of i:I —» Q). This follows from the .propoaition telow.

Proposition. let Mi = {14 ,(I%,¢), [7,i],Q,d ),y ]
be a free deterministic machine. Then its run (¥ is the free
extension i# of i,

Proof. Since every free machine is a standard one, it
is sufficient to prove that the free extension i# is the
smallest relation I¥—>>Q which fulfils Po i¥> F(i* Yo o
and i#z[n ,i]. Clearly, i* really fulfils the inequalities.
Now, let r:1¥ —> Q be a relation such that @ o r2F(r)e o
and rz[q ,il. Let r = (I#.,C,Q), let «:C—»I¥ y 3:C—
—> Q be projections. let @,%,3,& form a pullback ( &
opposite to P, & opposite to o¢ ). Denote by X the common
domain of & and $ 3 . Then gor =LF, & - (31 and,
since X is the preimage of C in the mapping @ = 15, &:X =

—» FJ, i} . (; :X —»Q are projections again. Since Po r2
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zF(r) o & , there exists a mapping gb:F(C) —> X such that
© - & = F(ow), E*FB=F(f). o . sincerzIly,il,
there exists a mapping %9 :I—» C such that '« o = N, Y =
= i. Consider the F-algelra (C, p«&). Denote by 'x‘#:(I*,q)-‘;
—>(C, @+ & ) the free extension of o . Since @+ @ » & =
= @-&+@=TFlog)s @ , we conclude that e :(C, @+ & )—>
—>(I#,?) is a homomorphism. Since g"#o o« is a homomorph-
ism of (I#, 9;) into itself and 7 . (3"'- x) =Pax=79
‘y'#o o0 must be lpy . Since B:(C,@+« F ) —» (Q,0") is a
homomorphism amd 7 « y#- (3 =i, the mapping 1#o B is e-
qual to i¥ . We conclude that i¥ = 14 ,i¥1 =
=yt o, y* Bl e, pl.

Note. The above proof could be simplified for Set, but
we preferred the form which works for general categories with-

out any modification,

II. Free components of machines
1. Let F:Set —>» Set be a varietor. let
M=0x,d,y),t,Qd),y]
be an F-machine. Let its initiation be expressed as L = (J,I,Q),
IcdnQ, let @:I—> J, € :I—>Q be the projections. lLet
(1% y$ ) and 7 :I —>I#* form the free F-algebra over the set
I. We define free components of M (the first M, and the
second Mi,) as
“1 = (114 9(1# ' @), ["l’fj 1 (Jyy), 00-14] ’
M, = (1,1t L), [4,8] ,Q,0),y).
Clearly, WM, and WM, are free machines. M, is determinis-
tic iff iM is standard.M|, is deterministic ifrf M1 is. standard.

The situation is visualized on the following picture.
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M,

2, let F:Set —>Set be a varietor, let IM| be an F-ma-
chine, Let M, and IMi; be its first and the second free

components.

Proposition. run IM & (run Wlll)-lo run IMi,. If eith-
er M or M'l is standard of if F covers pullbacks, then

run M = (run tMll)-lorun IMI2 and

beh M = (beh Wi;) tobeh M.

Proof. Let us apply the rur construction on iMll, lMI2
and M3 = M . Denote the corresponding r, s by T a is=
=1,2,3. Clearly, T30 = rzl;o" rp o0 If T3¢ < ri}“‘ © Ty
then vy () =Ty o+ 'qr'loF(r:s'w) o d e rﬁ‘oo rh0*

+ ?'loF(rEJ"d) v ®vg L, F(rz’“’) o d = r{}w+1ar2,¢+l (the
last equality is based on the fact that ¥ is a coproduct of
I and FI¥ with the coproduct-injections % :I—» I# ; ?:FI#—y
—>I% | hence the relations 7 © ¢! and Pe 7 “L are em-
Pty). The limit step is evident. We conclude that run Ml £

< (run Mll)'la run WMi,. If either M or iM"L is standard

or if F covers pullbacks (see I.4.), then always F(rﬁ'a‘) °
°F(!‘2'd,) = F(I‘Ii‘ © Tp ). This makes it possible to show

that r3"’= rI}oc ° T o for all o¢ , so run M = (run Ml)-lo
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diate consequence of the first one.

3. Let us say that a pullback

is the pullback formed by f and g. We say that F:Set —» Set
preserves preimages if the F-image of every pullback formed
by a pair of mappings f, g with f one-to-one, is a pullback
again. By [T;]1 if F covers pullbacks, then it preserves prei-

mages.

Proposition. ILet F:Set —»>Set be a preimage preserving

varietor. Then the equatiom

beh M = (ben M) %o beh M,
holds for every F-machine M (with ,Ml and “2 being the
free components of Wl ) if and only if F covers pullbacks.

Proof. By 2., we have only to show that if F does not
cover pullbacks, then there exists an F-machine iM| with
beh W s (beh M) e ben Miy. It will be shown in several
steps.

a) Since F does not cover pullbacks, it is not a const-
ant functor. Denote by F§ = D. Then we may suppose '(up to na-
tural equivalence) that DcFX for every set X and (Ff)(d) = q
for every mapping f and every d ¢ D. Since F is supposed to
preserve preimages, we have

(F£) (FX) 0 (Fg) (FY) = D
for every pair of mappings £:X —>A, g:Y—>A with £(X)n g(X)=
= @ anl £ being one-to-one.
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b) lemma. Let there exist a cardinal m such that
card (FX\D)4 m for all sets X. Then F is a constant functor.

Proof. By (K], if card FX<card X for some set X, then
F is constant up to X.

c) lemma. Let F do not cover pullbacks., Then there ex-
ists a non-empty set L and mappings ; :FL—FL, i = 1,2,
such that @;(d) = d for all de D and F does not cover the
pullback formed by “ and @pe

Proof. Since F does not cover pullbacks, theré exist
mappings f;:A) —> A3. 1, :A2—>A3 such that F does not cover
the pullback formed by fl and fz. Put m = L PR naéx,t’,gard Aj.
Then F does not cover the pullback formed by ST fl and
lnn fz (where 1L denotes a coproduct in Set). Denote f{ =
= 1,0, 1=1,2, A3 = uuj, J = 1,2,3. By the choice of
m we obtain card A‘; =m for j =1,2,3. Find a non-expty set
L such that card (FL\ D)z m (this is possible,. by b)) amd choo-
se one-to-one mappings JS:A‘;—DFL\D such that FL\(D933(A3))
have the same cardinality for j=1,2,3. Choose a bijection 6'1
of FLNZ (A{) onto FL\73(A3), identical on D, i=1,2, and defi-
ne My:FL—>FLas 77 e f{oy, on 2;(A) and 6; on FL\y;(A).
Then F does not cover the pullback formed by @3 and @5

d) Now, we finish the proof of the proposition. Let L
and @ :FL —>FL be as in c). Denote by €,:L— L. FL and
€5:FL —> L1l FL the coproduct injections. Put

M= LMWF(LiLFL)
and denote by e :L — M the first coproduct injection
v:F(Lil FL) — M the second coproduct injection and put
(Fe1)~ v = eyiFL— M, (Fgp)ev = 03:FFL-—)M.

We have (F g;)(FL)n (F €,)(FFL) = D. Define q;:FM —>> M by
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q; = Ly Fel,ezl + [Fez,e3]. We define a machine IM| as fol-
lows:

M = T1,M,q,), lej,e.1, (Myq,),17.
We show that run IMi # (run IMIl)-lo run IMi,. Denote by “*i
the run of My, i =1,2,3 ( My = M ). Then e o u"3-e;1 =
=1, and e, © L’3oe51 =eyele,e,)0 egl +ey0 egl., “q ©
o Fe; oFu’S uFeil ° (u.'z'lu ey egl.
Since the first summand is @ ard since Felo FL"3 © F(-.‘;1 =

= F(el ° L*3 o eil) (because F preserves preimages), we obtain

e2.°°’3°e51 = cLloF(eloJ‘.-ipe;l) ° (0,51 =@, °(“‘51

ey L*3o esl = eqe eslu FezoFé‘3o Fe'a'lo e30 egl =

Plep o *yeezh = Py o w3,

One can prove analogously that eye ( L’g_)-l o L*za e3” =
=F (ﬂ'loF ‘u.;l. Since F does not cover the pullback formed
by 9 and ,, we conclude that \3‘3 % ( ifl)'lo u"z .

Problem. Does the above proposition hold without the

assumption that F preserves preimages?

4. Examples. Let fL be a type, i.e. a set endowed with
an arity function ar: £l —> { cardinals % . The functor Fn:
:Set —> Set is defined by

x= 1l g@re g

F fol

L7 wen £ =co‘Ls'ln- rer @),
As it is well-lmov)m, ¥, preserves pullbacks for every L and
every arity function, so it covers pullbacks. Denote by P:
:Set —> Set the covariant power-set functor, i.e.

PX =4Zc X}, Pf sends Z to £(Z).
For any cardinal m, denote by P :Set —> Set its subfunctor

defined by
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PpX ={Z2c X |card Z&m}.

All the functors P, Pp, mc{cardinals } , preserve preimages.
P covers pullbacks (but it does not preserve them), but

P, covers pullbacks iff either m<3 or m = Hoe
(For example, P3 does mnot cover the pullback formed by
f: §0,1,2% — 4 0,13 and g: 40,1,2% —»4 0,13 , where £(0) =
= f(1) = 0, £(2) =1, g(0) = 0, g(1) = g(2) = 1.)
Hence, by 3., there exists a Py-machire Ml with run IM <
< (run Wlll)'le run Mi,. On the other hand, there exists no
such F-machine with either F = Fp orF=PorF = P with

n<3 orm = .8 .

III. Relations computed by X-machines

1. Let us recall (with formal modifications) the notion
of an X-machire in the sense of Eilenberg [E, p. 267]. An X-
machine J over an alphabet =, consists of the following data.

a) A finite = -automaton A = (Q,I,T) (i.e. a finite
set Q of states, IcQ initial states, TcQ terminal states)
with a next state relation d':Q = = —>> @;

b) a relatiom @ :X= = —>> X;

c) an input code o :A —> X and an output code @ :X—»
—>>Y.
For every 6 ¢ = , let us denote @(-,6):X —» X by Rg
and o(-, €):Q —=>>Q by Dy . The relation IM|:X—>>X is
defined in [E] ae U R6'1° cee @ R‘n’ where the union is taken
over all strings 6)... 6, accepted by the automaton A .
The relation computed by M is defined as oc v i M| 0 @ -

Define Fg :Set —> Set by Fg A =Ax = , Fy f = fx1,.
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For every X-machine M define an F, -machine Ml (M) as fol-
lows.

M (M) =T, (X,ar), [p,1yxil, (XxQ,A), [1yxt,Blew],
where i:I—>Q, t:T—>»Q are inclusioms; o :X=x = —> X, p:
:XxI—>X, P:XxT—» X are the first projections and
Al=y=,6) = Rgx Dg :XxQ —>>XxQ. The situation is visuali-

zed on the picture below.

Xx= F=Q=E
¥ ¥ o
Pd T&W/fxw e
<
; X;I x;T

2. Proposition. The relation computed by M is equal to
beh Wi (M).

Proof. We consider the free components of WM (M) (see
II.1). Denote by =™ the free monoid over = and by A the
empty string. The free Fz -algebra over XAI is formed by
(X=Ix 2* @) and 7 :X<xI—» XxI x 2 ¥ | where @ :XxIx
% Z2*« 2 —» X~Ix=¥* sgends every (x,q,s,6) to
(x,q,86) and 7 sends (x,q) to (x,q9,/A). The free extersion
p¥ : (X=Ix 2% ,¢)—> (X,7) sends every (x,q,s) to x while
the free extension (lxr-i)"# HX=I = ZE* ) —> (XxQ,A)
sends every (x,q,s) with 8 = 6,... 6 to (Rglu i «-Rs,n(x)).x
” (Dsl v.., 0 Do,n(x)). Hence

(1pmi)¥ 1~t 7

X QuZ¥ — > XxQe——XxT — > X

maps every X={q¥»{fs}, where s = 61... 6,, into X as

R o ... oR_ whenever (D eee ¢D_(q))NTHP and as P ot-
61 5n 6‘1’ ¢ 6‘nq * °
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herwise. Consequently, (p#* yle (lxxi)' ° (lxxt)-lo P is
equal to | M1 . Thus, ty II.2,
beh MI (M) =LeolMl o .

Concluding remarks. In the present paper, we deal with
F-machines only in the category Set. If K is a finitely com-
plete category, (¥¢,M) a factorization system in K, K is
M -well-powered amd fulfils the % -pullback property, then
the category Rel K of relations in K can be formed and any
¢ -preserving functor F:K—» K extended to a mapping F:Rel K->
—> Rel K by the formula Fl«,B1=[F(ax),F(f3)] such that
I.4.1)2)3) are fulfilled. This is presented in [Tl]. Then the
notion of an F-machine, its run and behaviour can be formula-
ted in this more general setting and the propositions I.9,

I.10 amd II.2 are still valid whenever M-sub-objects of
any object of K form a complete lattice.
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PURE SUBGROUPS SPLIT
Ladislay BICAN

Abstract: The purpose of this note is to characteri-
ze a class of mixed abelian groups G having the property
that each pure subgroup of G splits. For the groups of coun-
table (torsionfree% rank the problem is solved completely.

Key words: Splitting group, generalized p-height, in-
creasing p-height ordering, generalized p-sequence, p-rank.

AMS: 20K25

By the word "group" we shall always mean an additively
written abelian group. If M is a subset of a group G, then
{ M) denotes the subgroup of G generated by M. If g is an
element of infinite order of a mixed group G then hg(g)
('KG(g)) denotes the p-height (the characteristic) of g in
the group G. The rank of a mixed group G with the maximal
torsion subgroup T is the rank of the factor-group G/T.

In what follows we shall deal with a mixed group G with
the maximal torsion subgroup T and G will denote the factor-
group G/T. The bar over the elements will denote the ele-
ments from G. We say that a set M ={a, |4 ¢ J‘\} of ele-
ments of G is a basis of G if the set M =13, |2 e A} is

a basis of G, i.e. a maximal linearly independent subset of G.
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A sequence 8,181y« Of elements of a mixed group G is
said to be a p-sequence of g, if P8i41 = 84, 1 = 0,1,... .
Ilet U be any torsionfree subgroup of a mixed group G and let
8€G\U be an element of infinite order. If hg'/U(gHJ) = 00
then every sequence g = 891815+« of elements of G such that
p(gi+1+U) = g;*U, i = 0,1,..., is called a generalized p-se-
quence of g with respect to U,

Let M = fa | < @} ( @ is an ordinal number) be a
well-ordered basis of a mixed group G. We define the genera-
lized p-height Hg“«,) of the element a8, as the p-height of
a_ +A§¢, (ap) in G/A§u<°ﬂ) . The well-ordering on M is
said to be an increasing p-height ordering if Hg(am )£ Rg(%)
whenever o £ f<e@-

It is well-known (see [61) that if H is a torsionfree
group of finite rank and K its free subgroup of the same rank
then the number rp(l-l)_, of summands C(p®) in H/K does not de-
pend on the particular choice of K and this number is called
the p-rank of H.

lemma 1: Let M ={'J.\‘Z' € A}l be a basis of a mixed
group G with the torsion part T. Then G splits if and only if
there are non-zero integers LI A'e A , such that

1) %) = 2%3) ‘for each element a eafj\( m, a,),

(2) for every prime P there is an increasing p-height
ordering {m_a_ |x <} on M ={m,a, |A e A} such that
Hg(n‘a‘) =nc< oo if and only if « < » and fgr every
® < » there exists an element X, € G such that p“’(x«’#
+A§‘( myap)) =m a8, +“2¢< m, a8, ) anl every element
-7 a},r y V& P< w , has a generalized P-sequence with res-
pect toU =<{x o <» ).
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Proof: See [1; Theoreml].

The definition of p-rank of a torsionfree group H (of ar-
bitrary rank) can be found in [7]. In this note we shall need

only the following result.

lemma 2: If H is a torsionfree group, then rp(H) =0 if
and only if rp(K) = 0 for each pure subgroup K of H of finite
rank.

Proof: See (8; Corollary 2]. |

Lemma 3: ILet G be a mixed group with the torsion part T
and p be a prime. Let .{aq; |« < «3% be an increasingly p-height
ordered basis of G such that HGp(aa.‘) =n <o 1if and only if
® < » and let U=<x_|x < ») where x, € G are such that
p %(

x, +ﬁ§.‘.‘< aﬁ)) >H, +ﬁ§¢5( ag ) . If the p-primary compo-

nent Tp of T is a direct sum of a divisible and a bounded
groups then every element a,, »y PEY< w , has a generalized
p-sequence with respect to U.

Proof: By hypothesis, Tp = D® V where D is divisible
and p‘“v = 0. Put hy = 2y and assume that we {xave constructed
the elements ho'hl""’hn in such a way that h°+U, hl+U,...
«eeyhy +U are of infinite p-height in G/U and p(hi,_l'rU) = h;+U,
i=0,1,...,n~1,

Since h +U is of infinite p-height in G/U, there exist
elements h(e)iG, u(s)e U, s =1,2,..., such that pm*sh(a) =

= hn+u(s), Then p™ 1(p®-1n(8)p(1)) = y(8) (1) 1,(s),

and pm'

= u(s)_“(l) for some w(S)e U, Ubeing p-pure in G by (1, Lemma

4]. Consequently, p=I+ZLh(s)_h(l)_w(as) - d(°)+v(8), d(s)e D,

V(s)c V. From the divisibility of D the existence of elements

dgs)e D follows, for wnich ps'ldgs) = al®), Now, putting
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hn+1 = pmh(l) and zZg = h(S)-dgs), we have phn+1 = pmﬂh(l) =

- hn+u(1), pm~~s-1zs - p‘“(h(l)w(s)w(’)) - hn+1*'PmW(5) and. thie

assertion follows easily.

lemma 4: Let S be a pure subgroup of a mixed grcup G
with the torsion part T. Let p be a prime and a¢ S be an ele-
ment of infinite order, § = S/SnT, & = a+SA T, If hg(ﬁ) =
= hp(a) then hp(a) = h2(®) = hS(a).

- Stay = 1972y = 50 Ry 8 e 1S

Proof: Obviously, hp(a) = hp(a) = hp(a)é hp(a)_Z. hp(a),

as desired.

Lemma 5: Let G be a mixed group of the form G =
[
= .EO {t;?® A =T@® A where {t.) is a cyclic group of or-
iz i 1

der p i 3 21 < 12< +esy, and A is a torsionfree group of finite
rank. If rp(A)> O then G contains a non-splitting pure sub-
group.

Proof: We shall divide the proof into several &teps.
a) If A contains a rank one p-divisible pure subgroup B then
T®B is pure in G and T® B contains a non-splitting pure sub-
group by [2; Lemma 12].
b) If {al,az,...,an,an+1} is an increasingly p-height order-
ed basis of A then there is k<n such that Hg(ai).c c©w for
each i-= 1,2,...,k and Hg(ai) =00 for each i = k+1,...,n+l,
Obviously, we can assume that k = n, since in the opposite
case we can treat the pure closure B of <81,82,...,Bk,ak+1>
in A instead of A.
c) 1In view of a),b) and [1;Llemma 4] we can suppose that A
contains no element cf infinite p-height and that it has a
basis {al,az,...,an,al such that {N) = (al,az,...,an) is p-

pure in A and hg/<N)(a+(N)) =0 , hg(a) = 0. Thus, there are
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elements bje A with p’eibJl =atv,, v;e<ND, i =1.2,... .
Put 8; = byj+t;, i =1,2,..., U=<Nvu{s,,8,,...})and S =
={8€0G|msc U for some integer m, (m,p) = 1}. Obviously, S
is ﬂ'-pure in G where &= N\ {p} , ¥ being the set of all
primes.

d) Now we are going to show that S is pure in G. Suppose,
at first, that the equation pkx = u, ueU, has the a:lution

m Ld d
x in G. Letx=’:4f-a4 wit; +a’, a’e A, and u = v +. 2, Ays,,

.3 k X » L7 "
ve{N> . Then i-?.'.,' Pait; +pa’ =v+, 2 A by +£§4‘Aiti'
n
and so (G splits) . 21 p (“’1ti = 2 A ity pka = v +

l
A b ;- Hence A = p* ©; *+ P i)’ for some 1nteger »is

=4
1,2,...,r. Let I

" é-

be such that l zk and put » = ¢2 Y,

Jox
u’ = 4,51 “;s; + vp""’ 8;. Then p¥u 3-2' 2484 -
L3 )lr
-.:Z vi(a+v)'°'v(a+v)=u-v--§1viv +  vj. Furt-
her, p X’ -x) = Vv -V --2 vivie(ﬂ)and pkv pk(u'-x),
v’e (N, {N) being p-pure in A. So, u = px = p K(u’-v°) where

u’-v’c U,

Now the purity of S in G is easy to prove, If pkx = s,
8&S, is solvable in G, then ms = ug U for some integer m,
(m,p) = 1. So, there exist integers @,€ with mp+pk6'= 1
and the preceding part yields the existence of u’c U such that
p*u’ = u, Then pk(gou'+6's) =mps + pko'a = 8 and we are
through.

e) Now we shall prove that (tj)n S =0 for each j = 1,2,... &

Ir pktae S for some k < l then there exists a posiuve inte-

ger m r;latively pnme to p such that mpktj = v +-2 A8y =

=v *i?“‘l Ayb; +, 2 Ajsti, ve<{NY, We can clearly assume
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£s
that rZ j. The above equality yields A’i =p = i i=1,

L ;
2,000,r, i%], mpk= AJ'PJ(wj and0=pJ (v +
" L=k »

= j- (] k =
+ 2 Agp) =p Y (v F @ g(arvy) +mp bg)
A=k K L=k r
= J J
= (p 4'.?‘4 k(wi + m)a+w, w e (N, Hence p ;321 wi *
z.-
+m=0,p J | m - a contradiction showing that (tj)n S = 0.

f) Suppose now that the group S splits, S = P@® B, P torsion,
B torsionfree. Obviously, there exists a positive integer k
such that pkal, pkaz,...,pkan,pkae B. Put N ={pkal,pkaz,...
...,pkan’; and take an index j such that £.>k. For each i>j

. £; 1.-2.

. 1 - : J 1 Jd - = - =
thelequehty p "b; = atv; yields p “(p by b.j) vi=Y;
=p ‘]wi, w; &€ {N?, {(N) being p-pure in A. Further, for each

kdy k., .k
i >j the equality p by =pa+pvy, vie< N7, yields
k+§.

P J'ci = pka + pkvi, c € B, B being pure in G. Hence
£; Li=4; £ ;

Jencd Y3k, _ kK = Ko _ = n dnkK 1 k. o
p Y(p P ey pcé) =p vy vj) P “pw; and so p pcy

= pkc‘i + pkwi, B being torsionfree, pkwi € ('ﬁ')‘é B. We have
shown that pkc‘i +<N> is of infinite p-height in G/< N>. si-
milarly, the element pkb‘j + (ﬁ) is of infinite p-height in
k ~
A+ o
c3 (N>

k
- .+
. o iRy
+{N> lies in the torsion part T + {N)/{N>=Z T of G/AN? and
so pkbj = nkcjcB. Ccnsequéntly, pktj = pks.j-pk
tradiction (see e)) Pinishing the proof.

G/ <N and the same property has the element pkbj-p

l.
On the other hand, p J(pkbd-pkcj) = 0 shows that pk

bjeS - a con-

Definition: We say that a torsionfree group G belongs
to the class U if for each prime p with rp(G) = 0 each line-
arly independent subset N of G can be increasingly p-height

x : - G
crdered in such a way that N = {a_ Ie( < &t and Hp(aec)< oo}
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for each o6 < o -

Theorem 1: Let G be a mixed group with the torsion part
T such that G ¢ %W . Then every pure subgroup of G splits
if and only if _

(i) G contains a basis M such that <%a) = %@ for
each element a € (M) and

(ii) T_ is a direct sum of a divisible and a bounded

p
groups for each prime p with rp(a) > 0.

\

Proof: Sufficiency. Let p be a prime such that rp(a) =
= 0, Since G ¢ W , there exists an increasing p-height or-
dering {8, « < w} on the basis M of G such that Hg('s‘)< oo
for each o¢ < & o In view of (i), Hg(a«,)<oo for each
x < @ .

Let p be a prime with rp(5)>0 and let {a  |oc < «} be

o
< o if amnd only if oc < » . By Lemma 3, each element a.,

an increasing p-height ordering on M such that Hg(a‘) =n_ <

» £ 9 < & , has a generalized p-sequence with respect to
U=(x, |« <»> where x, < G are such elements that
pn"’(xoc + A?«, < ap) ) = a, +!5§¢ < ag > . Consequently, G splits
by Lemnma 1, G = T® A,

Now let S be a pure subgroup of G and N =-(aa]-7l- eAd,
be a basis of S. Then there exist non-zero integers m,, A €
€ A, such that the basis N =~[ma’a‘1 | X e.Ld of S is cont-
ained in A. Hence N satisfies condition (i) by Lemma 4.

If rp(5)>0 ther T  is a direct sum of a divisible and

p
a bounded groups by hynothesis. However, (Sn ’.I‘)p is pure in
'I‘p by L2 ; Lemma 7) and (Sn T)p is a direct sum of a divisib-

le and a bounced groups by L2; Lemma G]J.
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Finally, suppose that rp('é) = rp(A) = 0. simce G ¢ W
and N is a linearly independent subset of A, N can be increa-
singly p-height ordered in such a way that ’ﬁ =1 m, a, |ct <(«,}
and H;(m‘x a ) = Hg(mdecc) = Hg(mda“)< @ for each o« <.

Similar arguments as in the first part of the proof
show that S splits.

Necessity. Condition (i) is necessary by Lemma 1. As-
sume that G does not satisfy the condition (ii). Thus for a
prime p with rp(a)> O the p=-primary component Tp is not a di-
rect sum of a divisible and a bounded groups. Without loss of
generality we can suppose that 'I'p is reduced and that G =
= T'®B splits. Then r,(B) = r (G)>0 and Lemma 2 yields the
existence of a pure subgroup A of B of finite rank with

rp(A)> 0. Each basic subgroup of T  is unbounded by [2; Lem-

P

ma 11] and so T_ contains a subgroup T pure in T’ having the
0

form T =l§1®< t;) where <t;) is a cyclic group of order li,

4y<4,<... . An application of lemma 5 finishes the proof.

Corollgry 1: Let G = T@ A, T torsion, A torsionfree,
be a splitting group such that A € W , Then every pure sub-
group of G splite if and only if Tp is a direct sum of a di-
visible and a bounded groups for each prime p with rp(A)> 0.

Proof: Clearly, G satisfies condition (i) of Theorem 1
by Lemma 1.

Lemma 6: Every countable torsionfree group G belongs to
the class U .

Proof: Let p be such & prime that rp(c) = 0 and let M
be an arbitrary linearly independent subset of G. Choose a; €

¢ M in such a way that hg(al) = min{hg(a)lae M}. It is obvi-
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ous that hg(a1)< o (since rp(G) = 0). Suppose that we ha~
ve constructed the elements a;,85,...,8, such that Hg(al) £
£ Hg(aa) é...éﬁg(an)éﬂg(a) for each a€ M\ {ay,a5,...,8, %
and Hg(en)< @ . Choose am_lel\{el,a'z,...,an} such that
hg/v(an+1+V) = min{ hg/v(aHI) | ae M~ {al,az,...,ann where
V =<a),85,.+0,8,> . Using Lemma 2 we see that Hg(am_l) =

= hg/v(an+1+v)< 0 .Obviously, this procedure yields an in=-
creasing p-height ordering {a;,ay,...} on M (M is countable

by hypothesis) such that Hg(ai) < c© for each i = 1,2,... &

Theorem 2: Every pure subgroup of a mixed group G of
countable (finite) rank splits if and only if

(i) G contains a basis M such that fcc(a) = ’56(6) for
each element a ¢ (M7 and

(ii) Tp is a direct sum of a divisible and a bounded
groups for each prime p with rp(G)>O.

Proof: It suffices to use Lemma 6 and Theorem 1.

Corollary 2: Let T be a torsion group and A be a count-
able torsionfree group. Then every pure subgroup of G = T® A
splits if ard only if Tp is a direct sum of a divisible and
a bounded groups for each prime p with rp(A)>0.
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