

Werk

Label: Article Jahr: 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log27

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20,2 (1979)

QUASIMODULES GENERATED BY THREE ELEMENTS Tomáš KEPKA and Petr NĚMEC

Abstract: Quasimodules generated by three elements and their subquasimodules are investigated.

Key words: Commutative Moufang loop, module.

AMS: Primary 20105

This paper is a continuation of [1] and the reader is referred to [1] for definitions, basic properties of quasimodules, terminology, notation, references, etc.

1. Introduction. Throughout the paper, let R be a left noetherian associative ring with unit and $Z_3 = \{1,2,0\}$ the three-element field. Further, let $\Phi: \mathbb{R} \longrightarrow \mathbb{Z}_3$ be such that $-\Phi$ is a ring homomorphism of R onto Z_3 . The word quasimodule will always mean a special left R-quasimodule of type (Φ) .

For a set M, let |M| designate the cardinal number corresponding to M. If Q is a quasimodule then o(Q) is the least cardinal number equal to |M| for a generator set M of Q.

We shall define two primitive quasimodules $\underline{\mathtt{T}}$ and $\underline{\mathtt{S}}$ as follows:

 $\underline{\mathbf{T}} = \mathbf{Z}_3$, + is the usual addition and $\mathbf{r}\mathbf{x} = -\mathbf{\Phi}(\mathbf{r})\mathbf{x}$.

 $\underline{S} = \underline{S}(0,rx) = Z_3^4$, $\langle a,b,c,d \rangle \circ \langle x,y,u,v \rangle = \langle a+x,b+y,c+u,d+v+ (ay-bx)(c-u) \rangle$ and $r \langle a,b,c,d \rangle = \langle -\overline{\Phi}(r)s,-\overline{\Phi}(r)b,-\overline{\Phi}(r)c,-\overline{\Phi}(r)d \rangle$.

- 1.1. Proposition. (i) I is a free primitive quasimodule of rank 1.
 - (ii) $\underline{\mathbf{T}}^2$ is a free primitive quasimodule of rank 2.
 - (iii) S is a free primitive quasimodule of rank 3.

Proof. (i) and (ii). Every primitive quasimodule generated by at most two elements is a module. On the other hand, primitive modules are just vector spaces over \mathbf{Z}_3 .

(iii) One may verify easily that \S is not a module and \S is generated by three elements. Let \S be a free primitive quasimodule of rank 3. \S is generated by a set \S a, b, c \S and \S is nilpotent of class at most 2 (see [1, Proposition 4.3]). Hence $K \subseteq A(\S) \subseteq C(\S)$ is a normal subquasimodule, where \S is the subquasimodule generated by the associator (a,b,c). However, \S is a module by [1, Lemma 1.1] and consequently \S = \S (\S), o(\S) \S 1 and \S 1 A(\S) \S 3, since \S (\S) is a primitive module. Finally, o(\S) \S 3, \S 2/A(\S) is a primitive module, \S 2/A(\S) \S 3 and \S 3. Since \S is a homomorphic image of \S , \S is isomorphic to \S .

2. Soc-torsion quasimodules

2.1. Lemma. Let Q be a quasimodule such that $o(Q/C(Q)) \angle \Delta 2$. Then Q is a module.

Proof. There are elements $a,b \in Q$ such that Q is generated by $C(Q) \cup \{a,b\}$. Denote by P the subquasimodule generated by these elements. Then P is a module and Q is a homomorphic ima-

ge of the product $C(Q) \times P$. Hence Q is a module.

2.2. Lemma. Let Q be a primitive module and $0 \le n$. Then o(Q) = n iff Q is finite and $|Q| = 3^n$.

Proof. The variety of primitive modules is equivalent to the variety of abelian groups with 3x = 0. The rest is clear.

2.3. Lemma. Let Q be a finitely generated primitive quasimodule. Then Q is finite and $|Q| = 3^n$ for some $0 \le n$.

Proof. Q is nilpotent and we can proceed by the nilpotent class m of Q. If $m \le 1$ then Q is a module and the result follows from 2.2. Let $2 \le m$. Then Q/C(Q) is nilpotent of class at most m-1 and C(Q) is a finitely generated primitive module. The rest is clear.

2.4. <u>Proposition</u>. Let Q be a finitely generated $\widetilde{\mathcal{K}}$ -torsion quasimodule. Then Q is finite and $|Q| = 3^n$ for some $0 \le n$.

Proof. Q is noetherian and $\widetilde{\mathcal{K}}$ -torsion. Hence there is a finite sequence $0 = P_0 \subseteq P_1 \subseteq \ldots \subseteq P_{m-1} \subseteq P_m = Q$ of normal subquasimodules such that P_i/P_{i-1} are finitely generated and primitive. It remains to apply 2.3.

2.5. <u>Proposition</u>. Suppose that the ring R has primary decompositions. Let $\mathcal Q$ be a representative set of simple modules and $\mathcal Q$ a \widetilde{Soc} -torsion quasimodule. Then $\mathcal Q$ is a direct sum of its subquasimodules $\widetilde{Soc}_S(\mathcal Q)$, $S\in \mathcal Q$.

Proof. It suffices to show that Q is generated by $\bigcup \widetilde{Soc}_{S}(Q)$. However, this is clear from the fact that $A(Q) \subseteq X(Q)$.

2.6. <u>Proposition</u>. Suppose that the ring R has primary decompositions. Let Q be a finitely generated Soc-torsion quasimodule. Then there is a finite set S_1, \ldots, S_n , $0 \le n$, of simple modules not isomorphic to T such that Q is isomorphic to the product $\widetilde{\mathcal{K}}(Q) \times \operatorname{Soc}_{S_1}(Q) \times \ldots \times \operatorname{Soc}_{S_n}(Q)$. Moreover, if Q is not a module then $\widetilde{\mathcal{K}}(Q) \ne 0$.

Proof. Apply 2.5 and [1, Lemma 4.16].

2.7. <u>Proposition</u>. Suppose that R is commutative and finitely generated. Then every finitely generated Soc-torsion quasimodule is finite.

Proof. This is an easy consequence of 2.4 and 2.6 (take into account that every simple module is finite).

2.8. Proposition. Suppose that R is commutative and finitely generated. Then every finite directly indecomposable quasimodule is either a module or \mathcal{X} -torsion.

Proof. Apply 2.6.

2.9. <u>Lemma</u>. Let $1 \le n$ and Q be a quasimodule which is not nilpotent of class at most n. Then $3^{2n+2} \le |Q|$.

Proof. We can assume that Q is finite and subdirectly irreducible. Then Q is nilpotent of class m, $n+1 \neq m$. In particular, $n+2 \neq o(Q)$. But $A(Q) \subseteq \mathcal{J}(Q)$, and so $n+2 \neq o(Q/A(Q))$ (use [1, Proposition 4.12]). On the other hand, Q and Q/A(Q) are \mathcal{K} -torsion. Hence $3^{n+2} \neq |Q/A(Q)|$. Finally, $0 \not\subseteq A_n(Q) \not\subseteq \dots$ $\dots \subseteq A_2(Q) \not\subseteq A(Q) \subseteq Q$. Thus $3^n \neq |A(Q)|$ and $3^{2n+2} \neq |Q|$.

- 2.10. Corollary. Let Q be a non-associative quasimodule. Then $81 \le 1 \ Q \ 1$.
- 3. The radical E . Put E = p_{3} . That is, for a quasimodule Q, E(Q) is just the least normal subquasimodule such that

the corresponding factor is primitive.

3.1. Lemma. Let Q be a quasimodule. Then E(Q) is just the subloop generated by the elements $rx + \hat{\Phi} r(x)$, $x \in Q, r \in R$.

Proof. Denote by P the subloop. Obviously, P is a sub-quasimodule (we have $\operatorname{srx} + \operatorname{s} \Phi(\mathbf{r})\mathbf{x} = (\operatorname{s} \Phi(\mathbf{r})\mathbf{x} + \Phi(\operatorname{s})\Phi(\mathbf{r})\mathbf{x}) + (\operatorname{srx} + \Phi(\operatorname{sr})\mathbf{x})$) and $\operatorname{P} \subseteq \operatorname{E}(Q)$. On the other hand, $\operatorname{P} \subseteq \operatorname{C}(Q)$, P is normal and $\operatorname{Q}/\operatorname{P}$ is primitive. Thus $\operatorname{P} = \operatorname{E}(Q)$.

3.2. <u>Lemma</u>. Suppose that the ring R and a quasimodule Q are generated by subsets M and N, resp. Denote by P the subquasimodule generated by the elements $rx + \frac{\pi}{2}(r)x$, $r \in M$, $x \in N$. Then P = E(Q).

Proof. It is easy to see that $\mathbf{rx} + \mathbf{\Phi}(\mathbf{r})\mathbf{x} \boldsymbol{\epsilon} \mathbf{P}$ for all $\mathbf{x} \boldsymbol{\epsilon} \mathbf{Q}$ and $\mathbf{r} \boldsymbol{\epsilon} \mathbf{M}$. Denote by K the set of all $\mathbf{r} \boldsymbol{\epsilon} \mathbf{R}$ such that $\mathbf{rx} + \mathbf{\Phi}(\mathbf{r})\mathbf{x} \boldsymbol{\epsilon} \mathbf{P}$ for every $\mathbf{x} \boldsymbol{\epsilon} \mathbf{Q}$. We have $\mathbf{M} \boldsymbol{\epsilon} \mathbf{K}$ and $\mathbf{K}(+)$ is a subgroup of $\mathbf{R}(+)$. Let $\mathbf{r}, \mathbf{s} \boldsymbol{\epsilon} \mathbf{K}$ and $\mathbf{x} \boldsymbol{\epsilon} \mathbf{Q}$. Then $\mathbf{r} \mathbf{s} \mathbf{x} + \mathbf{\Phi}(\mathbf{r} \mathbf{s})\mathbf{x} = \mathbf{r} \mathbf{s} \mathbf{x} - \mathbf{\Phi}(\mathbf{r}) \mathbf{\Phi}(\mathbf{s})\mathbf{x} = (\mathbf{r} \mathbf{s} \mathbf{x} + \mathbf{r} \mathbf{\Phi}(\mathbf{s})\mathbf{x}) + (-\mathbf{r} \mathbf{\Phi}(\mathbf{s})\mathbf{x} - \mathbf{\Phi}(\mathbf{r}) \mathbf{\Phi}(\mathbf{s})\mathbf{x}) \boldsymbol{\epsilon} \mathbf{P}$. Thus K is a subring of R and K = R.

3.3. Proposition. E is a cohereditary radical for \mathscr{G} . Moreover, DSESC and \mathscr{F} = A + E.

Proof. Easy (use 3.1).

3.4. Proposition. Suppose that $R = Z [\alpha_1, ..., \alpha_n]$, $0 \le n$, is the ring of polynomials with n commuting indeterminates over the ring Z of integers. Then $A(Q) \cap E(Q) = 0$ for every free quasimodule Q.

Proof. We shall proceed by induction on n. First, let n=0. Then, by 3.2, E(Q)=D(Q)=3Q. Let $a\in A(Q)\cap E(Q)$ and let f denote the natural homomorphism of Q onto Q/A(Q). We have a=3b for some $b\in Q$, so 3f(b)=0. But Q/A(Q) is a free

Z-module, i.e. an abelian group, and therefore f(b) = 0, $b \in A(Q)$. Since A(Q) is primitive, a = 3b = 0. Now, let $1 \neq n$. Denote by P the subquasimodule generated by $\alpha_1 x + \Phi(\alpha_1) x$, $x \in Q$. Since $P \subseteq C(Q)$, P is a normal submodule. Moreover, $P = \{(\alpha_1 + \Phi(\alpha_1))x \mid x \in Q\}$. Let G = Q/P and let ge denote the natural homomorphism of Q onto G. First, we show that $A(Q) \cap P = 0$. For, let $A(Q) \cap P = 0$. We have $A(Q) \cap P = 0$. Thus $A(Q) \cap P = 0$. Thus $A(Q) \cap P = 0$ in $A(Q) \cap P = 0$. Thus $A(Q) \cap P = 0$ in $A(Q) \cap P = 0$. Thus $A(Q) \cap P = 0$ in $A(Q) \cap P = 0$. In this case, it is free and $A(Q) \cap P = 0$ by the induction hypothesis. Let $A(Q) \cap E(Q) \cap E(Q)$. Then $A(Q) \cap E(Q) \cap E(Q) \cap P = 0$.

3.5. <u>Proposition</u>. Suppose that R is commutative and finitely generated. Then $A(Q) \cap E(Q) = 0$ for every free quasimodule Q.

Proof. There are a polynomial ring $P = Z [\alpha_1, \dots, \alpha_n]$ and a surjective ring homomorphism $\varphi : P \longrightarrow R$ preserving the unit. Put $\Psi = \Phi \varphi$ and let Q be a free R-quasimodule. Then there are a free P-quasimodule F of type (Ψ) and a homomorphism f of F onto Q. Let $x \in A(Q) \cap E(Q)$. There are $a \in A(F)$ and $b \in E(F)$ with f(a) = x = f(b). Then $a - b \in Ker f$. But Ker f = IF, where $I = Ker \varphi$. Since $I \subseteq Ker (-\Phi \varphi)$, $Ker f \subseteq E(F)$ and $a \in A(F) \cap E(F) = 0$. Thus a = 0 and x = 0.

3.6. Lemma. Let P be a normal subquasimodule of a quasimodule Q such that $P \cap A(Q) = 0$. Then $P \subseteq C(Q)$.

Proof. For $x \in P$, $a,b \in Q$, $((x+a)+b)-(x+(a+b)) \in P \cap A(Q)$.

Hence (x+a)+b = x+(a+b) and $x \in C(Q)$.

3.7. Lemma. Let P be a normal subquasimodule of a quasi-module Q such that $P \cap E(Q) = 0$. Then $P \subseteq \mathcal{K}(Q)$.

Proof. Obvious.

- 4. Quasimodules generated by three elements. Throughout this section, let Q be a non-associative quasimodule with o(Q) = 3.
 - 4.1. Proposition. (i) Q is nilpotent of class 2.
 - (ii) $A(Q) \subseteq C(Q)$ and A(Q) is isomorphic to \underline{T} .
 - (iii) Q/C(Q) is isomorphic to T3.
- (iv) Either E(Q) = C(Q) or Q/E(Q) is isomorphic to \underline{S} and C(Q)/E(Q) to \underline{T} .
 - (v) If E(Q) + C(Q) then $E(Q) \cap A(Q) = 0$.
 - (vi) C(Q) = A(Q) + E(Q).

Proof. (i) This is clear.

- (ii) By (i), $A(Q) \subseteq C(Q)$. Further, there are a,b,c $\in Q$ such that Q is generated by these elements. Let P be the subloop of Q(+) generated by ((a+b)+c) (a+(b+c)). Then $P \subseteq A(Q) \subseteq C(Q)$, and hence P is a normal submodule of Q. By [1, Lemma 4.5], Q/P is a module. Hence P = A(Q) and $o(A(Q)) \neq 1$. However, $A(Q) \neq 0$ is a primitive module. Consequently A(Q) is isomorphic to \underline{T} .
- (iii) By 2.1, o(Q/C(Q)) = 3. However, Q/C(Q) is a primitive module and consequently Q/C(Q) is isomorphic to \underline{T}^3 .
- (iv) and (v). Let $E(Q) \neq C(Q)$ and P = Q/E(Q). Then P is primitive and P is a homomorphic image of S. On the other hand, $27 = |Q/C(Q)| \neq |P|$, |P| = 81 = |S|, and P is isomorphic to S. In particular, P is not a module, $A(Q) \neq E(Q)$ and $A(Q) \cap E(Q) = 0$,

since A(Q) is simple.

- (vi) Put P = A(Q) + E(Q). We have $P \in C(Q)$ and Q/P is a primitive module generated by three elements. Thus 27 = |Q/P| and P = C(Q).
- 4.2. Lemma. Let P be a proper subquasimodule of Q such that C(Q) is contained in P. Then P is a module.

Proof. Obviously, f(P) is a proper subquasimodule of Q/C(Q), where $f:Q \longrightarrow Q/C(Q)$ is the natural homomorphism. By 4.1(iii), $o(f(P)) \neq 2$. But $C(Q) \subseteq C(P)$, hence $o(P/C(P)) \neq 2$ and P is a module by 2.1.

4.3. Lemma. Let P be a maximal submodule of Q. Then P is a normal maximal subquasimodule and Q/P is isomorphic to $\underline{\mathbf{T}}$. Moreover, C(Q) is contained in P.

Proof. The set C(Q) + P is a submodule of Q. Hence $C(Q) \subseteq P$ and P is a normal maximal subquasimodule of Q by 4.2. Finally, Q/P is simple and a homomorphic image of Q/C(Q). Thus Q/P is isomorphic to \underline{T}_*

- 4.4. Lemma. Let P be a submodule of Q. Then $E(Q) + P \neq Q$. Proof. There is a maximal submodule G of Q such that $P \subseteq G$. By 4.3, $E(Q) + P \subseteq C(Q) + P \subseteq G$.
- 4.5. <u>Lemma</u>. Let P be a normal subquasimodule of Q such that $A(Q) \not\equiv P$. Then P is a module and $P \subseteq C(Q)$. Moreover, if S is a homomorphic image of Q/P then $P \subseteq E(Q)$.

Proof. Since $A(Q) \nsubseteq P$, $P \cap A(Q) = 0$. By 3.6, $P \subseteq C(Q)$. The rest is clear.

4.6. Proposition. A subquasimodule P of Q is normal iff either $A(Q) \subseteq P$ or $P \subseteq C(Q)$.

Proof. First, let P be normal. If $A(Q) \not\equiv P$ then $P \subseteq C(Q)$

by 4.5. Conversely, if $A(Q) \subseteq P$ then P is normal, since Q/A(Q) is a module. The other case is clear.

4.7. Corollary. Let P be a normal subquasimodule of Q. Then either P or Q/P is a module.

4.8. <u>Lemma</u>. Let P be a subquasimodule of Q such that P is not a module. Then $A(Q) \subseteq P$, P is normal, E(Q) + P = Q and T is not a homomorphic image of Q/P.

Proof. We have $O \neq A(P) \subseteq A(Q)$. Hence A(P) = A(Q) and P is normal. Further, suppose that Q/K is isomorphic to \underline{T} for a normal subquasimodule K with $P \subseteq K$. Then A(Q), $E(Q) \subseteq K$, $C(Q) = A(Q) + E(Q) \subseteq K$ and K is a module by 4.2, a contradiction. Now, it is clear that E(Q) + P = Q.

4.9. <u>Lemma</u>. S is a homomorphic image of Q iff $E(Q) \neq C(Q)$.

Proof. If $E(Q) \neq C(Q)$ then Q/E(Q) is isomorphic to S by

4.1(iv). Let S be a homomorphic image of Q. Then Q/E(Q) is not a module, and so $E(Q) \neq C(Q)$.

4.10. Proposition. $E(Q) \neq C(Q)$ iff Q is a subdirect product of S and a module.

Proof. Apply 4.1(iv), (v) and 4.9.

4.11. Construction. Suppose that $E(Q) \neq C(Q)$. Then $A(Q) \cap E(Q) = 0$. Denote by f and g the natural homomorphisms of Q onto Q/A(Q) and Q onto Q/E(Q), resp. By 4.1(iv), Q/E(Q) is isomorphic to S. Moreover, $g(C(Q)) \subseteq C(Q/E(Q))$ and $O \neq g(C(Q))$. Hence g(C(Q)) = C(Q/E(Q)) is isomorphic to T and g(C(Q)) = f(0,x,y). Let $a,b \in C(Q)$ be such that g(a) = x and g(b) = y. Then C(Q) is the disjoint union of the sets E(Q), a+E(Q), b+E(Q). Since C(Q) = A(Q) + E(Q), f(E(Q)) = f(a+E(Q)) = f(b+E(Q)) = f(C(Q)). Consider a subquasimodule G of f(C(Q)) and a homomorphism h of

G onto g(C(Q)). Then G/Ker h is isomorphic to \underline{T} and h induces an isomorphism k from G/Ker h onto g(C(Q)). Finally, let $p:f(C(Q)) \longrightarrow f(C(Q))/G$ and $q:f(C(Q)) \longrightarrow f(C(Q))/K$ er h be the natural homomorphisms. Denote by P the set of all $c \in C(Q)$ with $f(c) \in G$ and hf(c) = g(c).

4.11.1. Lemma. P is a submodule of C(Q), $A(Q) \cap P = 0$ and $P \not\subseteq E(Q)$.

Proof. Obviously, P is a submodule of C(Q). Let $c \in A(Q) \cap P$. Then g(c) = hf(c) = 0, $c \in E(Q) \cap A(Q) = 0$. Further, let $z \in G$ be such that h(z) = x. As f(a+E(Q)) = f(C(Q)), z = f(a+c) for some $c \in E(Q)$. We have $f(a+c) = z \in G$ and hf(a+c) = h(z) = x = g(a+c). Hence $a+c \in P$. But $g(a+c) = x \neq 0$, and so $a+c \notin E(Q)$.

4.11.2. Lemma. P is a normal submodule of Q, $A(Q) \nsubseteq P$ and \underline{S} is not a homomorphic image of Q/P.

Proof. P is normal, since it is contained in C(Q). Further, $A(Q) \nsubseteq P$ by 4.11.1 and \underline{S} is not a homomorphic image of Q/P due to 4.11.1 and 4.5.

4.11.3. Lemma. C(Q)/P is isomorphic to f(C(Q))/Ker h. Proof. Define a mapping t of C(Q) into f(C(Q))/Ker h by $f(C) = k^{-1}g(C) - f(C)$ for every $c \in C(Q)$. Using the fact that f(C(Q))/Ker h is a module, it is easy to see that t is a homomorphism. If $c \in P$ then $f(C) = k^{-1}f(C) - f(C) = 0$, and so $f(C) = k^{-1}f(C) = k^{-1}$

4.12. Lemma. Suppose that E(Q) + C(Q). Let P be a normal subquasimodule of Q such that A(Q) + P and S is not a homomorphic image of Q/P. Then P is a submodule of the type constructed in 4.11.

Proof. By 4.1 and 4.5, $P \subseteq C(Q)$ and $P \nsubseteq E(Q)$. Let $f:Q \to Q/A(Q)$ and $g:Q \to Q/E(Q)$ be the natural homomorphisms. As we know, $g(C(Q)) = \{0,x,y\}$ is isomorphic to T. Since $P \nsubseteq E(Q)$, g(P) = g(C(Q)). Furthermore, $A(Q) \cap P = 0$ and $f \mid P:P \to f(P)$ is an isomorphism. Consequently there is a homomorphism $h:f(P) \to g(P)$ such that hf(c) = g(c) for every $c \in P$. Obviously, hf(P) = g(C(Q)). Put f(P) + G. If $c \in P$ then $f(c) \in G$ and hf(c) = g(c). Conversely, if $c \in C(Q)$, $f(c) \in G$ and hf(c) = g(c), then f(c) = f(d) for some $d \in P$ and we can write g(c) = hf(c) = hf(d) = g(d). Thus $c - d \in A(Q) = E(Q) = 0$, c = d and $c \in P$. The rest is clear.

- 4.13. Theorem. Let Q be a non-associative quasimodule with o(Q) = 3. Let P be a subquasimodule of Q. Then:
- (i) P is normal, Q/P is a module and \underline{T} is not a homomorphic image of Q/P iff P is not a module.
- (ii) P is normal, Q/P is a module and $\underline{\mathbf{T}}$ is a homomorphic image of Q/P iff P is a module and $A(Q) \subseteq P$.
- (iii) P is normal, Q/P is not a module and \underline{S} is not a homomorphic image of Q/P iff P \underline{C} (Q) and either \underline{E} (Q) = C(Q) and P \underline{A} (Q) = 0 or \underline{E} (Q) $\underline{+}$ C(Q) and P is a submodule of the type constructed in 4.11.
- (i \forall) P is normal and S is a homomorphic image of Q/P iff $E(Q) \neq C(Q)$ and $P \subseteq E(Q)$.

Proof. Apply the preceding results.

4.14. <u>Lemma</u>. Let f be a homomorphism of a quasimodule Q onto a quasimodule P. Suppose that P is not a module and $o(Q) \leq 3$. Then f(C(Q)) = C(P).

Proof. By 4.5, Ker $f \in C(Q)$ and P/f(C(Q)) is isomorphic to Q/C(Q). According to 4.1, P/C(P) is isomorphic to Q/C(Q). Now, it is obvious that C(P) = f(C(Q)).

- 5. <u>Several consequences</u>. In this section, suppose that R is commutative.
- 5.1. Proposition. Let Q be a \mathfrak{F} -torsion quasimodule such that $o(Q) \leq 3$. Then every proper subquasimodule of Q is a module.

Proof. We can assume that Q is not a module. Let P be a proper subquasimodule such that P is not a module. Since Q is noetherian, we can assume that Q is a maximal subquasimodule. By 4.8, P is normal and Q/P is not isomorphic to \underline{T} , a contradiction.

5.2. <u>Proposition</u>. Let Q be a subdirectly irreducible quasimodule nilpotent of class 2. Then Q is $\widetilde{\mathcal{K}}$ -torsion and A(Q)+ \pm 0 is the least non-zero normal subquasimodule of Q. Moreover, A(Q) is isomorphic to $\underline{\mathbf{T}}$ and every proper factorquasimodule of Q is a module.

Proof. Since Q is nilpotent of class 2, $0 \neq A(Q) \subseteq C(Q)$. By L1, Proposition 5.4], Q is \mathfrak{X} -torsion. Further, A(Q) is a subdirectly irreducible primitive module. Hence A(Q) is isomorphic to \underline{T} and the rest is evident.

We shall say that a quasimodule Q satisfies the condition (∞) if Q is not a module and every proper subquasimodule as well as factorquasimodule of Q is a module.

- 5.3. Theorem. The following conditions are equivalent for a non-associative quasimodule Q:
- (i) Q satisfies (∞).
- (ii) Every subquasimodule and every factor quasimodule of ${\tt Q}$ is either a module or isomorphic to ${\tt Q}$.
- (iii) Q is subdirectly irreducible and every subquasimodule of Q is either a module or isomorphic to Q.
- (iv) Q is subdirectly irreducible and $o(Q) \neq 3$.
- (v) $o(Q) \leq 3$ and every factorquasimodule of Q ie either a module or isomorphic to Q.

Proof. (i) implies (ii). This is trivial.

- (ii) implies (iii). Q is not a module, and hence there is a subdirectly irreducible factor P of Q such that P is not a module. Thus P is isomorphic to Q.
- (iii) implies (iv). There are a,b,c \in Q with a +(b+c) \neq \neq (a+b)+c. Denote by P the subquasimodule generated by these elements. Then P is not associative and P is isomorphic to Q.
 - (iv) implies (v) and (i). Apply 5.1 and 5.2.
 - (v) implies (iv). This is easy.
- 5.4. Proposition. Let Q be a quasimodule satisfying (∞) . Then:
- (i) Q is subdirectly irreducible, nilpotent of class 2 and o(Q) = 3.
- (ii) Q is \Re -torsion, finite and $|Q| = 3^n$ for some $4 \le n$.
- (iii) $0 \neq A(Q) \subseteq \mathcal{F}(Q) = C(Q) = A(Q) + E(Q)$ and $A(Q) = C(Q) \cap \mathcal{F}(Q)$
- (iv) A(Q) is isomorphic to \underline{T} and Q/C(Q) to \underline{T}^3 .
- (v) Q is isomorphic to \underline{S} , provided Q is primitive.
- (vi) If Q is not primitive then $\mathcal{J}(Q) = E(Q) = C(Q)$.

Proof. (i) See 5.3.

- (ii) Use 5.2, 2.4 and 2.10.
- (iii) Since Q is not associative, $0 \neq A(Q)$, Moreover, $A(Q) \subseteq \mathcal{J}(Q)$ by [1, Lemma 4.20] and C(Q) = A(Q) + E(Q) by 4.1 (vi). On the other hand, every simple factor of Q is isomorphic to \underline{T} , and so $E(Q) \subseteq \mathcal{J}(Q)$. In particular, $C(Q) = A(Q) + E(Q) \subseteq \mathcal{J}(Q)$. However, by [1, Proposition 4.12], $O(Q/\mathcal{J}(Q)) = 0$, hence $|Q/\mathcal{J}(Q)| = |Q/C(Q)|$ and $|\mathcal{J}(Q)| = |Q/Q|$. Finally, $|Q| \cap \mathcal{K}(Q)| = 0$ is a subdirectly irreducible primitive module. The rest is clear.
 - (iv) Apply 5.2 and 4.1.
- (v) Let Q be primitive. Then Q is a homomorphic image of \underline{S} . Thus Q is isomorphic to \underline{S} .
- (vi) Let Q be not primitive. Then $E(Q) \neq 0$, $A(Q) \subseteq E(Q)$ and E(Q) = C(Q).
- 5.5. <u>Proposition</u>. A quasimodule Q is not associative iff there are two subquasimodules G, H of Q such that G is a normal subquasimodule of H and H/G is a quasimodule satisfying (α) .
- Proof. It suffices to show the direct implication. Since Q is not a module, a+(b+c)+(a+b)+c for some $a,b,c\in Q$. Let H be the subquasimodule generated by these elements. Then H is not associative and there is a normal subquasimodule G of H such that H/G is subdirectly irreducible and not associative. By 5.3, H/G satisfies (∞) .
- 5.6. Theorem. Let R be a principal ideal domain. Then, for every $4 \le n$, there exists a quasimodule Q such that Q satisfies (∞) , $|Q| = 3^n$ and Q is not primitive.

Proof. Let F be a free quasimodule of rank three and

let f denote the natural homomorphism of F onto F/A(F), By 4.1, $0 = A(F) \cap B(F)$, $0 \neq E(F)$ and C(F) = A(F) + B(F). In particular. 0+f(C(F)) is a free module. Hence, there are two submodules G, H of F(C(F)) such that H = G, G/H is isomorphic to T and f(C(F))/H is a X-torsion subdirectly irreducible cyclic module with 3^{n-3} elements. Further, let $g: \mathbb{F} \longrightarrow \mathbb{F}/\mathbb{E}(\mathbb{F})$ be the natural homomorphism. Then g(C(F)) = C(F/E(F)) is isomorphic to I (use 4.14). Hence there is a homomorphism h of G onto g(C(F)) such that H = Ker h. Consider the submodule P of C(F) corresponding to G, h in the sense of 4.11 and put Q = = F/P. By 4.11.2, Q is not associative and S is not a homomorphic image of Q. We have o(Q) = 3. By 4.14 and 4.11.3, C(Q) == C(F)/P is isomorphic to f(C(F))/H. In particular, C(Q) is subdirectly irreducible and Q is subdirectly irreducible by [1. Proposition 5.31. By 5.3, Q satisfies (&). Furthermore, $|C(Q)| = 3^{n-3}$ and |Q/C(Q)| = 27. Thus $|Q| = 3^n$. Finally, Q is not primitive, since S is not a homomorphic image of Q.

6. Free quasimodules

6.1. Lemma. Let $0 \neq n$ and Q be a quasimodule such that $o(Q) \neq n$ and Q/A(Q) is a free module of rank n. Suppose that $|A(P)| \neq |A(Q)|$, where P is a free quasimodule of rank n. Then Q is isomorphic to P.

Proof. Since $o(Q) \neq n$, there is a homomorphism f of P onto Q. Further, let $g:P \longrightarrow P/A(P)$ and $k:Q \longrightarrow Q/A(Q)$ be the natural homomorphisms. Since f(A(P)) = A(Q), f induces a homomorphism h of P/A(P) onto Q/A(Q). However, both P/A(P) and Q/A(Q) are free modules of the same finite rank and consequently h is an isomorphism. Now, let $a \in P$ and f(a) = 0. Then hg(a) = 1

- = kf(a) = 0, g(a) = 0, $a \in A(P)$. Thus Ker $f \subseteq A(P)$. On the other hand, $|A(P)| \le |A(Q)|$ and f(A(P)) = A(Q). Since A(Q) is finite, f|A(P) is injective and Ker f = 0.
- 6.2. <u>Proposition</u>. Let Q be a quasimodule and P be a free quasimodule of a finite rank n. Suppose that $o(Q) \leq n$ and P is a homomorphic image of Q. Then Q is isomorphic to P.

Proof. Put G = Q/A(Q). Then $o(G) \neq n$ and P/A(P) is a homomorphic image of G. But P/A(P) is a free module of rank n. Hence P/A(P) is isomorphic to G. The rest follows from 6.1.

In the remaining part of the paper, assume that R is a principal ideal domain.

6.3. <u>Proposition</u>. Let Q be a free quasimodule and P be a submodule of Q. Then there are a free module G and a primitive quasimodule H such that P is isomorphic to $G \times H$.

Proof. Denote by f the natural homomorphism of Q onto Q/A(Q). Then f(P) is a free module and consequently P is isomorphic to the product $f(P) \times H$, where $H = \text{Ker } f \cap A(Q)$.

6.4. Lemma. Let Q be a finitely generated quasimodule such that Q is not associative, $o(Q/A(Q)) \le 3$ and Soc(Q/A(Q)) = 0. Then Q is free of rank 3.

Proof. Since $A(Q) \subseteq \mathcal{J}(Q)$, $o(Q/\mathcal{J}(Q)) = o(Q)$ and Q is not associative, o(Q) = p(Q/A(Q)) = 3. On the other hand, Q/A(Q) is a finitely generated module with zero socle. Therefore Q/A(Q) is a free module. Finally, let P be a free quasimodule of rank 3. Then A(P) is isomorphic to \underline{T} , and so it is a homomorphic image of A(Q). By 6.1, Q is isomorphic to P.

6.5. <u>Proposition</u>. Let Q be a free quasimodule of rank 3. Then $A(Q) = \mathcal{X}(Q)$ is isomorphic to <u>T</u>, E(Q) to R^3 and C(Q) to

 $\mathbb{R}^3 \times \mathbb{T}$. Hence $o(\mathbb{C}(\mathbb{Q})) = 4$.

Proof. $A(Q) = \mathcal{K}(Q)$, since $\mathcal{K}(Q/A(Q)) = 0$. By 4.1, A(Q) is isomorphic to \underline{T} . Further, Q/E(Q) is isomorphic to \underline{S} , $E(Q) \cap A(Q) = 0$ and C(Q) = E(Q) + A(Q). Thus C(Q) is isomorphic to $E(Q) \times \underline{T}$ and E(Q) to E(Q/A(Q)). However, E(Q/A(Q)) is isomorphic to $E(R^3)$ and $E(R^3)$ is isomorphic to R^3 .

6.6. Theorem. Let Q be a free quasimodule of rank 3. A quasimodule P is isomorphic to a subquasimodule of Q iff it is isomorphic to one of the following quasimodules: 0, T, R, \mathbb{R}^2 , \mathbb{R}^3 , $\mathbb{R} \times \underline{\mathbf{T}}$, $\mathbb{R}^2 \times \underline{\mathbf{T}}$, $\mathbb{R}^3 \times \underline{\mathbf{T}}$, Q. Hence P is isomorphic to Q, provided it is not a module.

Proof. First, let P be a subquasimodule of Q. The factor Q/A(Q) is a free module of rank 3. If P is not associative then A(P) = A(Q) and P/A(P) is a free module. By 6.4, P is isomorphic to Q. Now, suppose that P is a module. In this case, we can use 6.3. The converse assertion follows from 6.5.

6.7. Corollary. Let Q be a quasimodule with $o(Q) \neq 3$ and let P be a subquasimodule of Q. Then $o(P) \neq 4$. Moreover, if P is not associative then o(P) = 3.

References

- [1] T. KEPKA: Notes on quasimodules, this issue,229-247.
- [2] S. KLOSSEK: Kommutative Spiegelungsräume, Mitt. Math. Sem. Giessen 117, 1975
- [3] J. IAMBEK: Lectures on rings and modules, Blaisdell Publ.
 Comp., London 1966
- [4] J.P. SOUBLIN: Étude algébrique de la notion de moyenne, J. Math. Pur. et Appl. 50(1971), 53-264

Matematicko-fyzikální fakulta Universita Kerlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 22.11.1978)