

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log24

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20,2 (1979)

A NOTE ON SEPARATION OF SETS BY APPROXIMATELY CONTINUOUS FUNCTIONS Jan MALÝ

<u>Abstract</u>: An example of two G_{σ} -sets with disjoint closures in density topology, which cannot be separated by any approximately continuous function is given.

Key words: Density topology, d-derivative of a set, separation properties of approximately continuous functions.

AMS: Primary 26A15 Secondary 54D15

According to Z. Zahorski [4] given any $G_{\sigma'}$ d-closed (i.e. closed in the density topology) set $A \subset \mathbb{R}$ there exists a bounded approximately continuous function f such that $A = \{x: f(x) = 0\}$. Consequently, for every pair A, B of disjoint $G_{\sigma'}$ d-closed sets there is an approximately continuous function f, which separates A and B in the sense that $0 \le f \le 1$, f = 0 on A, f = 1 on B.

The last assertion is not generally true, if we suppose A, B to be $G_{\sigma'}$ sets with disjoint d-closures only, as follows from the example, given in this paper. This answers negatively to the problem posed by M. Laczkovich [2].

Denote by λ the Lebesgue measure and by λ^* the corresponding outer measure. If E c R is an arbitrary set

and x & R, then we define the outer density of A at x by

$$D(E,x) = \overline{\lim} \frac{\lambda^{y}(\langle x-h, x+h \rangle \cap E)}{2h}$$

and the inner density by d(E,x) = 1 - D(R - E,x). The collection of all sets having the inner density one in each its point forms topology, which will be called the density topology (d-topology). It is easy to see that the d-derivative of a set $E \subset R$ will be the set $\mathcal{D} E = \{x \in R: D(E,x) > 0\}$ and the d-closure of E will be $E \cup \mathcal{D} E$.

Lemma 1. For an arbitrary bounded interval I = (a,b) and $c \in (0,1)$ there is an open set $G(I,c) \subset I$ with the following properties:

- (1) {a,b}c DG(I,c).
- (2) If $x \in \mathbb{R} I$ and h > 0, then $\lambda (G(I,c) \cap \langle x-h, x+h \rangle) \leq 2ch.$

Proof. Put

$$d_{n} = c((n+1)^{-1} - (n+2)^{-1}),$$

$$L = \begin{bmatrix} 0 \\ n=1 \end{bmatrix} (a+n^{-1} - d_{n}, a + n^{-1}) \ln(a, a + \frac{1}{2} c(b-a)),$$

$$R = \begin{bmatrix} 0 \\ n=1 \end{bmatrix} (b-n^{-1}, b - n^{-1} + d_{n}) \ln(b - \frac{1}{2} c(b-a), b),$$

$$G(I,c) = L \cup R.$$

The property (1) is evidently satisfied, concretely

$$D(G(I,c),a) = D(G(I,c),b) = \frac{1}{2}c$$

(choose $h = n^{-1}$, n = 1, 2, ...). We shall prove (2) for $x \neq a$.

We claim

(3) $\lambda (\langle x-h, x+h \rangle \cap L) \neq ch.$

Indeed, consider $m \in \mathbb{N}$, $(m+1)^{-1} \le h \le m^{-1}$. Then

 $\lambda(\langle x-h, x+h\rangle \cap L) \leq \lambda(\langle a-h, a+h\rangle \cap L) \leq$ $\leq \lambda(\langle a-m^{-1}, a+m^{-1}\rangle \cap L) = c(m+1)^{-1} \leq ch.$

On the other hand,

(4)
$$\lambda (\langle x-h, x+h \rangle \cap R) \leq ch.$$

If $h < \frac{1}{2}(b-a)$, then (4) holds trivially, since

$$\langle x-h, x+h \rangle \cap R = \emptyset.$$

If $h \ge \frac{1}{2}(b-a)$, then

 $\lambda(\langle x-h, x+h \rangle \cap R \leq \lambda R \leq \frac{1}{2} c(b-a) \leq ch.$

From (3) and (4) we immediately obtain (2).

Denote by C the Cantor's discontinuum (or an arbitrary perfect nowhere dense set with AC = 0, inf C = 0, sup C = 1). There are open disjoint intervals (a_i, b_i) (i = 1, 2, ...) such that

$$C = \langle 0, 1 \rangle - \bigcup_{i=1}^{\infty} (a_i, b_i).$$

The set $\bigcup_{i=1}^{\infty} \{a_i, b_i\}$ will be denoted by S. Further put B = = C - S. Finally, consider

$$A = \bigcup_{i=1}^{\infty} G((a_i, b_i), 2^{-i}).$$

The sets A, B and S have the following important properties:

Lemma 2. (i) $\mathfrak{D} \land B = \emptyset$.

(ii) S = 2 A.

(iii) S is not a Go.

(iv) A and B are G_{σ} sets with disjoint d-closures.

<u>Proof.</u> (i) Let $x \in B$. Choose $\varepsilon > 0$. Find a positive integer k with $2^{-k} < \varepsilon$. There is $\sigma > 0$ such that

For every i > k+1 and h, 0 < h < o' we have

$$\lambda((x-h, x+h) \cap G((a_i,b_i), 2^{-i}) \leq 2^{-i+1}h.$$

Thus

$$A(\langle x-h, x+h \rangle \cap A) \leq \sum_{i=N_{i+1}}^{\infty} 2^{-i+1}h < 2\varepsilon h.$$

Since $\varepsilon > 0$ may be chosen arbitrary, $x \notin \mathcal{D} A$.

- (ii) For every i = 1, 2, ... we obtain from (1) $\{a_i, b_i\} \subset \mathcal{D} G((a_i, b_i), 2^{-i}) \subset \mathcal{D} A$.
- (iii) The set S is of the first category and dense in the Baire space C, and thus it is not a G_{σ} .
- (iv) Obviously, A is open and $\langle 0,1 \rangle B = i \mathcal{O}_1 \langle a_i, b_i \rangle$. Since AB = 0, we have $DB = \emptyset$. Clearly, $A \cap B = \emptyset$ and using (i) we obtain

$$cl_{\mathbf{d}} A \wedge cl_{\mathbf{d}} B = cl_{\mathbf{d}} A \cap B = \partial A \cap B = \emptyset.$$

We shall show that there exists a set whose d-derivative is not a $\ensuremath{\mathbb{G}_{\sigma^c}}$:

Theorem 1. If A is as above, then DA is not a Gr.

Proof. It is an easy consequence of Lemma 2, parts (i),
(ii) and (iii).

<u>Definition</u>. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is said to be approximately continuous if for every $x \in \mathbb{R}$ there is a set M such that $x \in M$, d(x,M) = 1 and $f|_{M}$ is continuous at x.

The approximately continuous functions are just the continuous mappings from the density topology to the euclidean

one. Thus,

(5) $\{x:f(x)=0\}$ is d-closed

for any approximately continuous function f.

Since any approximately continuous function f is of the Baire class one (see for example [31), it follows that

(6)
$$\{x:f(x)=0\}$$
 is a G_{σ} .

Theorem 2. Assume that an approximately continuous function f vanishes on A. Then there exists $x \in B$ with f(x) = 0.

(A, B are as above.)

<u>Proof.</u> Denote $M = \{x: f(x) = 0\}$. By (5), $\mathcal{D} A \subset M$ and by (6), M is a $G_{o'}$. Thus $\mathcal{D} A \cap C \neq M \cap C$ according to Theorem 1. Hence there is a point $x \in M \cap C - \mathcal{D} A \subset C - S = B$.

<u>Corollary</u>. The sets A and B cannot be separated by any approximately continuous function.

Remark. It is not difficult to prove that the d-derivative of any set is always a $G_{\mathcal{O}_{\mathcal{O}}}$. We have seen that the d-derivative need not be a $G_{\mathcal{O}'}$. On the other hand, it need not be a $F_{\mathcal{O}}$ as well. Indeed, let M be a measurable set such that $\lambda(I \cap M) > 0$ and $\lambda(I - M) > 0$ for every interval I. Then either M or \mathbb{R} - M is not a $F_{\mathcal{O}}$. Let us remark only, that if M is a set whose d-derivative is not a $F_{\mathcal{O}}$, then the upper symmetric derivative of the function $x \longmapsto \lambda(\langle 0, x \rangle \cap M)$ is not of the first class of Baire (although the upper derivative, or even the upper symmetric derivative of arbitrary function is of the second class of Baire, see e.g. [1]).

References

- [1] O. HÁJEK: Note sur la mesurabilité B de la dérivée supérieure, Fund. Math. 44(1957), 238-240.
- [2] M. LACZKOVICH: Separation properties of some subclasses of Baire 1 functions, Acta Math. Acad. Sci. Hungar 26(1975), 405-412.
- [3] J. LUKEŠ and L. ZAJÍČEK: The insertion of $G_{\delta'}$ sets and fine topologies, Comment. Math. Univ. Carolinae 18(1977), 101-104.
- [4] Z. ZAHORSKI: Sur la première dérivée, Trans. Amer. Math. Soc. 69(1950), 1-54.

Matematicko-fyzikální fakulta Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 18.12. 1978)