

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20, 1 (1979)

SYMMETRIC EMBEDDING OF FINITE LATTICES INTO FINITE PARTITION LATTICES P. PUDLÁK

Abstract: It has been shown that every finite lattice can be embedded into a finite partition lattice. Here we show some additional properties which such an embedding can have.

Key words: Finite lattice, partition lattice, symmetric graph, matching.

AMS: 06A20, 05C99 .

For a finite lattice L define the dimension function on L, d:L \longrightarrow N , d(x) = the length of the longest maximal chain between 0 and x. Let Δ denote the kernel of d, let $x \sim y$ denote that there is $\alpha \in \operatorname{Aut}(L)$ such that $x = \alpha(y)$. It is known that in a partition lattice $\Pi(X)$ two partitions are in the relation \sim iff they are of the same type iff they are isomorphic. The partition \sim of L is a refinement of Δ .

Let $g:L \longrightarrow \Pi(X)$ and let Θ be the co-image of $\Delta_{\Pi(X)}$, (or $\sim_{\Pi(X)}$), i.e.

 $x \theta y iff d(x) = d(y),$

(or $x \theta y$ iff $\exists \infty \in Aut$ (L) $x = \infty(y)$).

Then, clearly, Θ satisfies the following two properties

- (1) $x\theta y$, $x \neq y \Longrightarrow x = y$, i.e. every class of θ is a co-chain.
- x) This is a part of the CSc dissertation of the author.

(2) for no $x,y,z,t\in L$, $x \theta y$, $z \theta t$, x < z, y > t.

Theorem. If a finite lattice L and a partition Θ of L satisfy (1),(2), then there is an embedding of L into some finite $\Pi(X)$ such that

$$x \theta y \Rightarrow \varphi(x) \sim \varphi(y),$$

 $\neg x \theta y \Rightarrow \neg \varphi(x) \Delta \varphi(y).$

Corrollary.

- 1) For every finite lattice, there is an embedding into a finite partition lattice which preserves Δ .
 - 2) The same for \sim .

<u>Problem.</u> Let L be a finite lattice and d':L \longrightarrow N an arbitrary mapping such that d'(x) \prec d'(y) whenever x \prec y. Is there always an embedding $\varphi:L \longrightarrow \Pi$ (X), X finite, such that, for y \neq 0,

$$\frac{d'(x)}{d'(y)} = \frac{d(\varphi(x))}{d(\varphi(y))},$$

where d is the dimension on $\Pi(X)$?

Proofs

<u>Lemma 1</u>: Let $(L_1)_{i \in I}$ be a system of lattices with the following properties:

- 1) $|L_2 \cap L_K| \leq 1$, for $z \neq K$,
- 2) if $x \in L_1 \cap L_K$ and $y \in L_2 \cap L_A$ then x = y or x and y are incomparable,
- 3) if G is the symmetric graph on I, in which $(2,\kappa)$ is an edge iff $(L_2 \cap L_{\underline{K}}) = 1$, then G does not contain cycles of length < 5.

Then adding the biggest and the smallest element to $\bigcup_{\mathbf{I}} L_{\mathbf{J}}$ we obtain a lattice.

Proof: The proof of this lemma is just a tedious verification of basic properties of a lattice, we leave it to the reader. (Condition 3) enables us to treat the case such that for some $x \in L_2$, $y \in L_K$, where distance of 2,K in G is 2, there is a nontrivial upper (or lower) bound z. Then we can derive that z must be in L_A , where A is uniquely determined by the fact that (2,A) and (A,K) are edges of G.)

Lemma 2: For every $k \ge 1$, there is a symmetric graph G such that

- 1) G is bipartite,
- 2) G can be decomposed into k disjoint matchings,
- 3) G does not contain cycles of length < 10.

Proof: In [3] a graph $G_{n,m}$ is constructed for all $m,n\geq 2$, which can be decomposed into n disjoint Hamiltonian cycles, does not contain cycles of length < m, and is bipartite. Since $G_{n,m}$ is bipartite, the Hamiltonian cycles can be decomposed into matchings, then we can omit superfluous matchings. (Use of the result [3] was suggested by V. Rödl.)

Let $C,D\subseteq L$ be two co-chains in a lattice L. We shall say that they are non-crossing iff for no $x,y\in C$ and $z,t\in D$, x<z, y>t. A partition θ of L satisfies (1).(2) iff the classes of θ are pairwise non-crossing co-chains.

Lemma 3: Let C_1, \ldots, C_n be a system of non-crossing cochains of a finite lattice L. Then there is a finite lattice K, and a system of embeddings $\varphi_1: L \longrightarrow K$, $\iota \in I$, and for every i, $1 \le i \le n$, $x,y \in C_i$, there is a permutation π' of the set of indexes I such that

 $\varphi_{\imath}(x) = \varphi_{\imath \imath'(\imath)}(y)$ for every $\imath \in I$.

Proof:

- 1) n=1. Let $k=|C_1|$ and let G=(Z,R) be the graph of Lemma 2 for k. Let $Z=Z_1\cup Z_2$ and $R=\sum_{\kappa\in C_1}R_{\kappa}$ be the decompositions given by 1),2) of Lemma 2. Take a system of distinct copies of L, say, L_{ι} , $\iota\in Z_1$, such that they are also distinct from Z_2 . Then glue together x_{ι} of L_{ι} with κ , for every $\kappa\in C_1$ and $(\iota,\kappa)\in R_{\kappa}$. Since G does not contain cycles of length < 10, we can use Lemma 1 to obtain a lattice K. For $\kappa,y\in C_1$, the permutation π can be defined putting π (ι) equal to the unique $\kappa\in Z_1$ such that there is ι 0.
- 2) n>1. By induction over n, using 1). We have only to add to the induction hypothesis the condition that any co-chain non-crossing with C_1,\ldots,C_n is mapped by φ_2 , $\imath \in I$, on a co-chain in K.

Proof of the Theorem: Let L, θ satisfy conditions (1), (2), L finite. Let C_1, \ldots, C_n be all the classes of the partition θ . Extend L to L' and C_i to C_i , $i=1,\ldots,n$, in such a way that for every two different C_i , C_j there are $x_0 \in C_i$, $y_0 \in C_j$, x_0 comparable with y_0 . Let K be the lattice given by Lemma 3 for L', C_1, \ldots, C_n , let $\psi: K \to \Pi$ (X) be an embedding of K into a finite partition lattice. Take a system of sets X_2 , $Y \in I$ of the same cardinality as X, and let $\psi_2: K \to \Pi$ (X), $Y \in I$, be some isomorphic copies of $Y : K \to \Pi$ (X), Finally, define $Q: L \to \Pi$ (Y), $Y = \bigcup_{i=1}^n X_i$, by $Q_i(x) = \bigcup_{i=1}^n \psi_i (Q_i(x))$.

Clearly, φ is an embedding. Now, let $x,y \in C_1$, then $\varphi_1(x) = \varphi_{\pi(x)}(y)$ for some permutation π and every $z \in I$. Since $\psi_{\pi(x)}$ and $\psi_{\pi(x)}$ are isomorphic, we have

 $\psi_2 \varphi_1(x) \sim \psi_{\pi(2)} \varphi_2(x) = \psi_{\pi(2)} \varphi_{\pi(2)}(y)$.

Thus there is a 1-1 correspondence between isomorphic parts of φ (x) and φ (y), which proves φ (x) $\sim \varphi$ (y).

On the other hand, if x,y belong to different classes C_i , C_j , we have $x_0 \in C_i$, $y_0 \in C_j$, x_0, y_0 comparable. Then, of course, $\varphi(x_0)$ and $\varphi(y_0)$ must have different dimension. Therefore $\varphi(x)$ and $\varphi(y)$ have different dimension.

The only thing that remains to do now is to take the restriction of $\boldsymbol{\phi}$ to L.

References

- [1] Pavel PUDLÁK, Jiří TŮMA: Every finite lattice can be embedded in a finite partition lattice, Algebra Universalis - to appear.
- [2] Pavel PUDLÁK: Representations of finite lattices (in Czech), CSc dissertation, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague, 1978.
- [3] V. Neumann-Lara: k-Hamiltonian graphs with given girth, Coll. Math. Soc. János Bolyai, Infinite and Finite Sets, Keszthely, 1973, 1133-1140.

Matematický ústav Č S A V Žitná 25, 11567 Praha 1 Československo

(Oblatum 6.12.1978)

