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MERGING OF STATES OF MARKOV CHAINS WITH INFINITE PROBABILITY
P. KORKA

Abstract: In the paper we investigate sequences of con-
tinudus time finite state Markov chains, some transition rates
of which tend to infinity. We show that states which communi-
cate infinitely fast with each other can be merged, thus ob-
taining Markov chains with fewer states and finite transitiom
rates, which approximates the original one.
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Finite filtered Markov chains were introduced by Richarad-
son (1975) to construct probabilistic models of self-reproduc~
tion. They are continuous time finite state Markov chains, who-
se transition rates depend on parameters, amnd may tend to zero,
infinity, or to a finite number.

Apart from self-reproduction, other applications of this con-
cept a}e suggestive. Thus in the life of a population, & muta-
tion happens considerably mere rarely than normal reproduction,
and soon after it happens, a stationary distribution of its
occurence is attained. In chemistry, a reaction A¥B — C+D
may proceed by forming a complex E, which is highly unstable,
and quickly decomposes to either A+B or C+D. This situation
may be represented by a chain
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where transition rates r,, r, are infinitely larger than s,
and 8,. If our unit of time is long enough, we can neglect
the state E, because the process stays in it for an infinite-
1y short period of time, and approximate the chain by
8 ry/(rytry)
A + BE= C+D
s,ry/(ry+ry)

We show in the present paper that such approximation is pos-
sible whenever all infinite transition rates are of the same
order, i.e. if their ratio is finite. A set of states of such
chain is infinitely ergodic, if between any two of its mem-
bers there is a path of infinite transition rates, and no in-
finite transition rate leads out of it. A transition out of
an infinitely ergodic set A occurs only after infinite tran-
sitions attain equilibrium on- A, and soon after the process
leaves A, it arrives to another infinitely ergodic set. In the
limit, this new process over infinitely ergodic sets has Mar-
kovian character, so we obtain & finite filtered Markov chain
with fewer states, which approximates the original one. The
transition rates of this new chain are solutions of a system
of linear equations, so the computation of the transition pro-
bability matrix is a bit simplified.

To simplify the notation, the finite filtered Markov chains

are defined here as sequences of transition rate matrices.

Definition., A finite filtered Markov chain over & fini-

te set of states € is a sequence of matrices
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(r; (x,y)) such that

x,y€C, iew
l. xpy=p r;(x,y)>0, xe ‘f=p,y-2‘2€ riy(x,y) = 0 for any iea,
2. For any x4+ye € there exist ,lim ri(x,y)ef0,001].

A~y 00

A finite filtered Markov chain (ry) over ¢ has one level, if
whenever . lim ri(x,y) = , ,limr.(z,v) =c0 then
vy 1900 1

,lim v (x,y)/r;(2,v) < .
iy @

Definition. Let (ri) be a finite filtered Markov chain
over € .
1. (pi(x’y)(t))x,ye‘f,tzo,ieu the transition probability mat-
oo g . _ n
rix is given by p;(t) = exp (ryt) =ﬂ§o (ryt)"/nt . p; (x,y) (t)
is the probability that the chain ry is in state y at time t,

provided it started in x at time O,

2, F={f(x,y)e €x€|,1lin r;(x,y) = 20¢ , §* is the re-
13

flexive and transitive closure of 7.

3. D ={As €| A¥0, AxA = F*, [ A]< A7 is the set of
infinitely ergodic sets of (ri). (Here LAl =4{y | (x,y)e 5
for some x€Af.) We have A€ & iff between any two of its
members there is & path of infinite transition rates, and no

infinite transition rate leads out of A.

4. N =<€¢-UD is the set of infinitely transient states (which
may be empty). For any x€ N there is a path of infinite transi-

tion rates leadimg from x to some A € & .

5. (Pi(A’X))Aea ,xef ,iew * the equilibrium matrix of (ry)
is given as follows:

X§A=pP, (4,x) = 0,

XEA=»0%P; (A,x)& 1'x§A P;(A,x) =1 for any A € &,

ng—oy?.A P.i(A,y)ri(y.,x) + P; (4,x) %A r;(x,y) = 0.
(Pi(A'X))x(A is the equilibrivm distribution of (r;) on A,
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6. (Qi(x’A))xee,Ala,iao , the absorption matrix of (r;)
is given as follows:

xeA=b Qi(x,A) =1, xeBed , B¥A=s Q; (x,A) =0,

xeN, A¢ D -P”'EN r; (x,y)Q; (y,A) +~_§A ri(x,y) =0
Qi(x,k) is the probability that the first set of & which the

chain ry visits is A, provided it started at x.

Observe that P;Q; = Ip (identity matrix), and that
(Pyry), (r;Q;) are bounded sequences. Furthermore, if (r;)
has one level, then finite limits zlémei, i._]_.’_igz Qi 4'_:I_%%:’Piri,
L::lé; riQ; exist. To compute for a given t>0 _L_];Jg p;(t) =
'L-]r‘i: exp (rjt), it may be reasoned as follows:

Suppose that the process starts in some x€&A. Then before any
transition with finite rate occurs, the infinite transitioms
attain equilibrium on A. The transition rate from A to say
yéA is then xE‘A P, (A,x)r; (x,y). (This was proved in Richard-
son (1975).) The process then jumps in negligible time from y
to some B with orobability Qi(y,B). In this way, the transi-
tion rate from A to B is xﬁng Pi(A,x)ri(x,y)Qi(y,B),
which is equal to (A,B)-entry of the matrix P;r;Q;, and

t>0, x& A‘)i}}:‘p ﬁ’ p; (x,y)(¢) = l}yi: (exp(PiritQi”A,B
Now, starting from some x e € the process first jumps to some
A with probability Qi(x,A), then it behaves according to
Piriqi’ and if it ends in B, it attains there equilibrium
(Pi(B'y))ye g This may be expressed by the equality

t>0 =7L}'ig exp (rjt) =4‘_,1%1: Q; exp (PyritQ;)P;.
Actually, for chains with one level this holds for any sequen-
ces (P;), (Q;), for which (Pi)'(Qi)'(Piri)' (r;Q;) are conver-

gent sequences, and Pi°1 = I.
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Theorem. Let (r;) be a finite filtered Markov chain
over £ with one level, let & be its set of infinitely ergo-
dic sets, let (P;),(Q;), be sequences of Px¢ resp. € x D

=S=

matrices such that there exist finite limits 1lim Py, L lim Qi’
<+

i@
43_.35 P.r., 4’,-’,}3 rx‘Qi and P;Q; = Ig « Then for any t> 0
i q 2 P.r.tQ.) P;.
‘,_}’% exp (rjt) =4,_J_.’:_I.£Q1 exp (P;r;tQ;) Py
To prove the theorem, denote ¢ = card (¥€), d =card (2),

d=c-d, and let @ be some index set with card ) =43,
DnABD =o.

If (ri) is a bounded sequence, then ¢ = 4, P;, Q; are inverse
to one another, and the theorem holds trivially. Suppose the-
refore that (r;) is not bounded and denote T; = max 4r; (x,y))
[x,y € €%, &, %’igoTi = a0 , and there exist finite limit

r =, 1lim r;/T.. We prove first tw lemmas.
4300 1

Lemma 1. The eigenvalues of r; may be assigned to sets
2, & in such way that ('a'i(z”zea@ are eigenvalues of r; for
which , 1lim J\.i(z)/Ti =0

1> ‘
(‘q'i(‘"‘))zza')' are eigenvalues of r; for which 4‘:I_.’i:'l; Re(.}\,i(z)) =
= -0 .

Proof: The set of ergodic sets of r =, lim r./T. is 0,

21 00% 1500 1771
8o the multiplicity of the eigenvalué O of r is just d. By
Gershgorin theorem (see Franklin (1968)), for any eigenvalue A
of r( A -r(x,x)| & -r(x,x) for some x ¢ € , so A% O implies
Re(A )< 0. Since the eigenvalues depend on the matrix continu-

ously, the lemma follows,

Lemma 2. Define a sequence of matrices ‘i =
=z1:r5(ri = I,+A;(2)). Then there exist bounded sequences of

matrices (u;(z,x)), 3 xee (Ti(Xa2))y 0 ,zed Such that
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“1‘1\3 0, Ajvy = 0, wyv, = IH’ BTV = UL, ViWTE = TV,
Proof: The proof is straightforward provided all non-ze-
ro eigenvalues of r are distinct. In this case, for sufficient-
1y hrge i (‘2“1(2))2&26 are distinct too, and we can define the
z-th row of u; as the le ft eigenvector of ry corresponding to
.?.i(z), and the z-th column of v; &s the right eigenvector of
ry corresponding to ﬂoi(z). We normalize these vectors so that

their scalar product is 1, and both (“i(z’x”xe%’ - ('i(x’z»xef

are bounded sequences. Then u;v; IH' and since the factors of
A; commute with each other, u;A; = Ajvy = 0. Furthermore w;r; =
= ‘A‘iui ryv; = vi./\. i» Where ./\.i is the diagonal matrix, whose

diegonal is (A (2z)), 3 . So wyriviu; = ‘A'iuiviui = Ajuy =

=uyry, vyuyryvy = viuvidy = v Ay = v

In the general case of multiple eigenvalues denote

By =, o &y - I - Hy(2)), A = lin Ai/Tg, B=,lin B, /1.

It follows from the theorem on p.126 in Franklin (1968) that
X, = Ker (A) @ Ker (B), where X, is the complex vector space
with dimension c, Ker (A) =4{xeX | x+ A = 0f. By Cayley-Hamil-
ton theorem, AB = 0, so Im (A)€ Ker (B), where Im (A) ={x. A\
| xexc",v. Since the dimension of both these spaces is d, we ha-
ve Im (A) = Ker (B).

Let u be any D = € mnatrix whose rows form a basis for
the space Ker (A), so uA = O. Since X, = Ker (A)® Im (A), the-
re exists the unique € x ? matrix v with uv = I3, Av = 0.
Since X, = Ker (A;)® Im (A;) for any i, there exist matrices
ug, vy with wA; = 0, A;v; =0, wyvy = I3, —&L-iﬁiui = u,

lim v, =v, so (u;), (v;) are bounded.

v 0
Si r.)A. = uAr. = T . JA.
ince (uyri)A; = uAyr; = 0 = (u;ryviu Ay,
(uiri)vi = (uiriviui)vi, we have u;ry = uyrivius.
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Since A;(r;v;) = r;A;v. =0 = Ay (vureve),

u; (r3vi) = uy(viur.v.), we have r.v,

i%iTiv3 ivi T ViY%iTivie

Proof of the theorem: By lemma 2, we have PiAivi/Ti'1=

= 0. If we carry out the multiplication in A;y we get a poly-

nomial in L) whose every term but absolute has the form

d-k-1 =
and so it is bounded. It follows that the absolute term
Piv,Ty :L'I;l"“s (.Z.i(z)/Ti) is bounded too, and if we multiply it
by bounded sequence 21;!'5 (Ti/a,i(z)), we get that Pivi'l'i is
bourd ed, so ,1lim P.v. = O,

1900 11

Similarly we get that u;Q; T, is bounded, and i}ri:; wQ =

= 0. From this result and Lemma 2 it follows

P, C[PiQ;, Pyv;
T S

i uiQy, u3vs
80
By
, lim _g;[ }- detlQy,vil =1,
1~ -

Therefore, for sufficiently large i [Qi,vi_'] is regulaer,

Saa

det [Q;,v;]1 is bounded away from zero, and £Qv,l “1 is bouna-
ed, too. Define a P x € matrix Fi = [Id,OJ £Q;,v;] =1, There

is (Pi-f"i)‘l‘:-L £Q;,v;1 = ).'O,Pivi'l‘i] which is bounded, so

(P; - Fi)Ti is bounded, and , lim (P; - B;) = 0. Again we have
iy

B. :
x
[ ui} [Qi,vil ==k 1

5 o1

_ P11

and we can define Q =[ ul_] '[ OdJ so that (Qi - Qi)Ti is boun-
i

ded, and ,lim (Q; - —di) = 0, There is
vy oo
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P, - _ P. .

[ 1]'[Qi’vi] = Ic, BO[Qi,Vi][ 1.( =Q:P. + v.u. = I , and
u. u;J
i i

ry ® (QiP + vuy )y (Q P +ovuy) = Q1P rlﬁlp1 + QP.r.v.u, +

+ viuiriQ P + ViuTiv.uL.
By Lemma 2 the middle two terms of this expression are

i v- Vg T r. = r.v.u.
zero since i Pvut 0, uy 1q1 uy 111Q1

i%i
3G, O B,
We have r; =[ Qi,vi] I : ] [ 1]

so the eigenvalues of r are divided between P:.erl‘"d uyTivs.

Since PlrlQl is bounded, it has bounded eigenvalues, so by

Lemma 1 the eigenvalues of u,r,v. are (J\, (z)) 3> It follows

i'i

that for any t>0  lim exp (U;r;tv;) = 0, and
v ro

,lim [exp (rjt) - 6:1 exp (f’iritai)l'iij =0,
1 ~roo
Furthermore,
Pr,Q - Bir,Q; = (P-Py)rQp + (Byry/Ti)(Q-Q)T —> 0
since r;Q;, (Q--a-)T- are bounded, and ,(1lim (pi_pi) =
<t -y o0

11: Plrl/T = 0. Since P;r;Q; is bounded,

“.’J:inol’[ exp (Pje;tQ;) - exp (PyritQ;)] =

and the theorem follows.

Besides some ingight into the structure of finite filter-
ed Markov chains, the above theorem yields also a reduction in
computational comple xity of the transition probability matrix
exp (rit). If we take for P;, Q; the equilibrium and absorp-
tion matrices of r;, then the nontrivial values of P;, i.e.
(Pi(A’x”xeA are obtained by solution of a system of linear
equations with card (A) unknowns, and nontrivial values of Q>

i.ey (Q(x,A)),y are solutions of a system of lirear equations
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with card (N) unknowns. Since the computation of the exponen-
tial of a matrix is a rather complicated task, and the dimenw
sion of PiriQi may be substantially smaller than that of Ty
the whole procedure may be much simplified.

The theorem may be also used for Markov chains with fini-
te (but sufficiently large) transifion rates. In this case the
error of approximation is of the order exp (-st), where s is

the value of some large transition rate.

Example. Consider a chain

1
4

w

‘\;*\5
A

with matrix
-2i-1, 2i y 1 , O , O
3i, -3i-5 , 5 sy O , O
r. 0 y O, =51 , 3i , 2i
s 21 , O y =31 , i

o ,0 , 2 , o , -2

Clearly J ={{1,2},{53} , N =43,4% and following (constant)

matrices satisfy the assumptions of the theorem:

1, o

1, 0

Pi=[3/5, 2/5,0,0,0] Q =|2/5 , 3/5
0, 0,0,0,1 2/3 , 1/3

o , 1

Then PiriQi is the matrix of the chain
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39/25
1,2} = —> {53

4/5
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