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FUNCTIONALS WITH LINEAR GROWTH IN THE CALCULUS OF
VARIATIONS - I
M. GIAQUINTA, G. MODICA, J. SOUCEK

This part is the direct continuation of the preceding

paper in this issue.

3. About the regularity theory. It is well known.that ge-

neralized BV solutions to the non-parametric Plateau problem

are locally Lipschitz continuous and consequently analytic func-
tions. As the two following examples show, the minimum points

of our functionals may be non-smooth; in fact they may have
Jumps not only on the boundary but also on the interior of their
domain, and therefore they cannot be Blfl functions.

So if we want to obtain some regularity result, we have to
restrict the class of functionals to be considered. In fact we
will prove that minimum points are Lipschitz continuous and the-
refore smooth for functionals of the kind of the area (we are
giving below the exact conditions).

Conditions are the bnes of O.A. Ladyzhenskaya and N.N,
Ural‘tseva, see [13], and roughly speaking we can say that they
are the ones that grant the a priori estimnte.of’the gradient.
We do not show that these conditions are necessary, but, as ex-
ample 3.2 shows, if these conditions are not satisfied, then

solutions may have jumps on the interior.
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Our examnles concern the l-dimensional problem, but it
is not difficult to extendthemto any dimension, for example in

a ring.

Example 3.1. Let u&BV(-1,1) be a generalized solution to

1 /—
{ f 1+ x(t) a2 dt —» min

problem
-1
u(-1) = - a, u(l) =a

that is u minimizes in BV(-1,1) the functional
Filul =L,q 1)\/1 + o (t) 82 + Voo (-1 u(=1) + al+ Vo (1) u(1)-al
~1y

where
w(t) = 1 + t%(log 214
1ty
and & is a real constant such that
q -1
8 >f (e (t) - 1) 2 at.
-1
First we have
(3.1) u(-1) = -a, u(l) =‘a;
to see this, consider the BV(-1,1) function

u(t) - u(-1) - a -1l£t<O
v(t) = {

u(t) - u(1) + a O<t«£1,

If (3.1) does not hold, then

Fivi= [ }\/1 +ec ()% + Vo (0)u_(0) - u,(0) = u(-1) +

4,1\{0

(1) -2 NE )92 + |/ -
+u a|< (-‘{4)\‘0} +oc(t)vS + o6 (0)Vu_(0)

-u, (0 + Ve (=Dlu(-1) + al + Ve ("NMu(1) - al =F L u)

that is we reach a contradiction.
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On the other hand u cannot belong to Hl'l(-l,l). In this ca-

se, in fact, we could define from the Buler equation that

u(t) = a.e. in (-1,1)

A
< (t)yx () - A2

for some A e R with A% < minJ « , hence the contradiction

<a.

1 e dt
= (-1) - u(1) [ ¢ |tlat & —_—
e " Ly I« NCIG

At this point we have proved that the minimum point u takes
the boundary datum and does not belong to Hl’l(-l,l). To com-
plete our example we want now to prove that u has a jump ex-
actly in zero, that is; that the singular part of the measure
4 in the Lebesgue decomposition has support in zero.

Let (ﬁn,ﬁs) be the Lebesgue decomposition of U with respect to
the Lebesgue measure &ﬂ1 . Consider the BV(-1,1) function v
characterized by

Y= ‘.‘R v(-1) = u(-1)
. 4 [
Vs ® f.« bg + d,

where d; is the Dirac measure. with support in O. Then v(1l) =

= u(l) and the following estimate holds:

f_: \/1+cc32=j_‘:\/1+ x§§+ Vi (0) | J_‘_:
ﬁf: \/1+oa$§+\/oc(0).£:| \'xsl

o
uS\L—

Now, since u is & minimum point, we deduce
1 o 1. .
J;“\/eo lig1 ¢ Veo(0) quus\
i.e. supp ig54{0}. On the other hand from the above conside-
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ration it is clear that \'as is not the null measure.
Finally note that the above example does not work if we suppo-
se o« (t)e 01’1(-1,1), 8till with & minimum in zero (in fact

we have in this case

1
4 -
j1 (e (t) = (0)) Zat=+m),
while jumps on the boundary may still occur with smooth x(t)

with minimum on the boundary.

Example 3.2. Let ueBvV(-1,1) be a generalized solution
to problem
j: (1 + « (£)1815)2% at — min
(3.2) -

u(-1) = - a u(l) = a

2

where k>2, o (t) = 1+ t° and & is a constant greater than

1
J'1 [(1+ )1 3 VE gcr 0,

Exactly as in example 3.1 it is easily seen that the solutiom
is smooth in (-1,1) \ { O}, takes bounlary datum end has a jump
in zero.

Note that this time the obstruction to regularity does not de-
pend on regularity of oc(t).

The Bernstein genre of the Euler equation of functional in (3.2)
is k. Therefore this example shows that the Dirichlet problem
for equatioms with genre greater than two is generally not sol-

vable on arbitrary domains (see [19]).

We now state the exact hypothesis (see [13]) under which
we will prove regularity. We will suppose that £2 be bounded
Lipschitz domain, f(x,p) be & function of class 02(_\'_). =~R™)
and g(x,u) be a function of class c?(R xR). Alsowe assume
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that there exist the rpxx ’ fppx derivatives and that
the following holds:

(3.3) »lplef(x,p)c M1 +(pl)

(3.4) lg,l + 1 14c

. (x,p) Py 2 ] V1 + ‘Plz - ¥,
P
(3.5) li‘pxl + lfppxl + lgulf.-c
c
(fpipx(x,p) ryl = <

(3.6) gz P

2 (E,’h-’
(“1(131 1*‘7‘—‘2) 51 piPj(x,P) §5 §j <

- (§, n)?
< o (161" =)
where v, M, Y, (41 are positive constants, ¢ and Y, are non-
negative constants, and (f yP) denotes the scalar product in
RrR™.

Finally we suppose that g(x,u) is such that there exist
generalized solutions to problem (1.9) (see the end of para-
graph 2).

Conditioms (3.3)...(3.6) are verified for example by the
area or mean curvature functionals, by the functional in exam-
ple 3.1 if we suppose x(t)e 02(-1,1), but they are not satis-
fied by the functional in example 3.2.

Remark that functionals which satisfy (3.3)...(3.6) have
Bernstein’s genre equal two, while the general functionals in

paragraph 2, i.e. functionals for which only (3.3) holds, may
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have for example as Bernstein ‘s genre any oc With oc > 1.

Finally observe that (3.6) implies that problem

{F[u] =fn{ £(x,Du) + g(x,u)} dx—> nin
u-ge H%'l(n )

has at most one solution in Hl’l(.n. e

We recall the notation

- _dx ddu =
dlul = &f(x,;;,—z;b—) d‘q. + '&.ﬂ. f(x,O,)J(g - Uy )

ay ™+ f.n. g(x,u) dx

for every ue BV(Ql) and @ € oq ); and every time we will
want to emphasize the domain £ where the functionals are con-
sidered we shall put the subscript 2 to & or F. Note that

for every ue g 1(Q) with u = @ on 3L we have FLul = Flul.

Theorem 3.3. Let belong to Ll(a.ﬂ. ). Under the above
Let ¢ Dbelong 1o

hypotheses, every generalized solution ue BV(Q ) to problem

3 Lul—> min
(3.7) «{

ue BV(SL)

is a locslly Lipschitz continuous function.

The idea of the proof is taken from Gerhardt [7]. We first

prove the following

Theorem 3.4. Under hypotheses of theorem 3.3 there ex-

jsts at least one solution to problem (3.7) which is Lipschitz

continuous.

Theorem 3.5. lLet BR(xo) be an open ball with radius R

small enough. let ¢ be & smooth function on BBR. Then there

exists at least one solution to problem

- 162 -



% akt u] —» min
usBV()

which is Lipschitz continuous on §R and such that the trace of

u is equal to @ .

Then, as in [ 7], we will prove theorem 3.3; and, since we
have just to change the functional mean curvature with 3 in
[ 7] to obtain the proof, we will omit its

We Bet theorems 3.4 and 3.5 by an approximation argument
using precise estimates (ob&ained with the same technique of
[13]) of the gradients on solutions of approximant problems,
the barrier technique and a devise in [9].

Proof of theorem 3.4. Let ué&BV(SL) be a solution to pro-

blem (3.7) and let O* 530N . Extend u to ¥eBV(N*) in such
& way that

fa_nl DY| = O and consider (see remark 1.7) a sequence {uhl &
c C%(R™) such that

=, dx ddw
F Euh]—ryn f(x,-d?,q;—) du + ‘[n g(x,u) dx

1
u“lan“’ Yan in L7(30 )
u,—> u in L'(0¥),

For every h e N and every ¢ with O0< € < 1, the approximant

problem _
Faulvl+ e J_;_*|DV|2——-> min
ve B2 (n¥)
v=u on n*~\ N

has a unique solution zy € L2(n*)A c%(N) and we have
1
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(3.8) ef IDmy 1%+ B L5 Jsef D012, 0w

so that
2 2
€ J;;_t‘mh,s U aL" ’h,s 1% J;:_tl mh,e\ ’ -L_r\ zh,e'

are estimated by a constant which depends on Yy, but does not

depend on € . On the other hand, if Kcc KEcc ) we have
. N L 2

(3.9 m&p | sh"l . c(dut.(x,al(),e‘&lzh’e 1<, IKU | zh’el)

(the proof of this kind of estimates is standard, so we will

omit it), and

(3.9) s\sz IDzh"\ £ c(daist(k,2K), Sﬁlp lzh"_H

(we delay the proof of (3.9) until later).

Therefore, passing eventually to & subsequence, for g going to
zero we see that {zh,ei converges weakly in BV(Q*) to some
z,6 BV(.*) which is locally Lipschitz continuous in £l and
equal to w, on D*N Q. Also

2
EJ;”IDzh"\ —> Ay e R, A20
Powlop) € liminf Foolmy ]
and passing to the limit in (3.8) for e going to zero we get
A+ rn,,[zh]é !"a,‘fuh:l.

From the last inequality we now deduce that

\ ’hl BV(0*)* ‘h & constant which does not depend on h

and consequently
a\’zp lz,l, 8‘\‘11) \Dzh\ £ constant which does not depend on h,
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Hence, passing eventually to a subsequence, we may go to the
limit for h going to infinity and infer that {2y} converges
weakly to some z € BV(Q*) which is locally Lipschitz continuous

in O and equal to ¥ in Q*\ . . Moreover we have
oA—> AeR

=  dx dDz
‘er(x,a,—dp—) du + §.e(x,2) +4 s

=,_ dx ddid ~
Ja*f(x’?fa_’W) du + ._fa'g(x,u)

from which, taking into account convexity and homogeneity of F,
we deduce that A = 0 and z is a generalized solution to problem

(3,7). qe.e.d.

We now pass to prove 3.9. In fact, we shall prove a sharper a

priori estimate of the gradients and precisely

Proposition 3.6. Let A& 1 be a non-negative real con-
stant amd y € Hl’z(.ﬂ.), let u, be a solution to problem

F.Lvl+ Afnl Dv\z—,» min
(3.10)

verb2(a) v-ye D),

Then for every ball Bp with Bpcc KR

| Dua, 1l £ C
1Y 1B/y
where C depends on % %sc u, and does not depend explicitly on
2R

A,
The fact of emphasizing the dependence on % %sc u, in the
aR

gradients estimate is just what will allow us to prove theorem
3.5.
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The following lemma due to Stempacchia [21] and the be-
low Soholev estimate, which can be obtained with the same proof

in [13], will turn out useful.

Lemma 3.7. Let u(h,£ ) and a(h,£ ) be non-negative func-

tions defined for h>0 and O < £ £ Ro' imcreasing in £ for h

fixed and decreasing in h for £ fixed. Suppose

c
u(h, £ )& ———— u(k,R) a(k,R)2/D
(R -2)2
ailly; P} el i R
’ U —gy?

where h>k2>0, 0<£< R£R . Then there exists d such that

a(d,R /2)u(d,R /2) = 0

and
T 8-1
d¢ Cyley,n) u(0,8)Y?R T  a(o,R) 2
where

1 p 2
9-2+ I+s

Lemma 3.8. Set
SA' = {(x’xl‘+l) € N = R’n' :xn+1 = ua‘ (X);b

Then for every ge Cow (Bg)

am m-2 1/2
(£ g™ ann )%= < ey (J, 1oel? az ™)
S 5
where C3 depends on osc u, .
— By 4

Proof of propositiom 3.6: the proof follows the one in
L13]. Putting ¢ = (u(x) - u(x,)) sz with § € CP(Byplx,)),
§ =1 on Bp(x,), fV§1 £ c/R as test function in the Euler

equation for the functional in (3.10) we deduce
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(3.11)A{f Vis+io,l2+ [ |Du|2fé
LY WP Brby %
2

1 .
£ C(1 + b1 g::(x,) :J_)

where C does not depend on A .
Set

o

ﬁ,k ={xe O : @, (x)>k}

= log (1 +|Du,|?)

S‘Z’]c = vi(x,ua‘ (x)) :stA’kS .
Putting in the Euler equation as test function

$ = Dy (Dyu max(ed, - k,0) §2)
integrating by parts and summing on s = 1,n, we deduce .
(3.12) | S, 12¢2ast®+ 2 (+(p,)2))
é.a,% A é 2& L 2 &
2.2 ax4C (a0, = X)° |88 1° +
IDes, 19§ fs‘%k 2 §

+ A (1+ 1w, |2) (@, - k)2 |Dd|2
'&;.,n.. A > $

while putting ¢ = D, (Dgu max(c, - 1:,0)2 § 2) we deduce
2 2 | 22 2
(3.13) '&4,.‘(“”' )¢ | o, | gj;c{f_g%m(«{,L k)
2 2
(§°+1d81% +a &au(l +1Du | %) 1Dg 12
2
(w, = k) } .
Set now
A, (h,2) = A&’hn By S, (h,2)® (A(h,£)%x R ) S,
a, (h,£) = meas A, (h,4)

U W,d) = [ (ap -0 f

2
5,0h, 09 (1+ lDu&l )

(h2) “
(ey - k)
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Using (3.12),(3.13),(3.11) and the Sobolev estimate in lemma.
3.8 it is easily verified that hypotheses of lemma 3.7 hold
for functions u, (h,£) and &, (h,£) with constamt c, depen=
ding on % obs;; u, . So that we have

d
“m,a.“en .35/4(x°) ae

where d is estimated Wy a constant depending on % gsc u,

2R
multiplied by

’ A 2, 2]~
(3.14) &§ 1= @+ [ arimDe .
1\- B g..m B B "'}

Now to estimate (3.14), put in the Euler equation as test func-

2

tion [u(x) - ulx,)lw, ) 2; it is not difficult to deduce

[ 1 2 2
CRTI R“I(l +hge =) Law“ +
2 2.2 2,21
+ (goc w2 1dwl 2 [ 1Dal
B "» { S b ] B © %2 § ]J}
and again choosing as test function Dg4 (Dsu . §a) we derive

(3.14) &£ C (depending on% sc u, ) =

2R "

A 2 1 21

(AP a+ip 1242 u, )% =2 a8 ]
[nnfam a a"‘ram‘ a5

end finally because of cd:é Ji+ I Du, | 2 ond (3.11) we get

the proof.
Unfortunately we are not able to show that a generalized

solution and a smooth solution to problem (3.7) differ for

constant. Had we proved this, then theorem 3.3 would easily
follow.

Since this is not the case, we have to prove theorem 3.5
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However, this proof also yields us the method to prove global
regularity.

Proof of theorem 3.5: remark that theorem 3.5 follows with
the same proof as theorem 3.4 if we are able to state global es-
timates (3.9°), (3.9). Concerning the estimate of the maximum

of solution u, we have: let U, be & solution to problem
Pplul =f £(x,Dv) *f g(x,v) +.2.f \Dvlz—-y min
. B BR Br
(3.15)
v-g€ Bg'z(BR)

then

hw, Ny, ,B: ¢
vwhere C depends on |l ¢ |l”, 8n - This is easily seen comparing
Fplu,l with Fp computed on

k in AL ={x eQ :u, (x)>Xk}
v(x)=§
u (x)

in x c.Q.\Ak

x> man_é lee| , using the hypothesis on g (made to get existen-
ce in paragraph 1) which grants estimate essentially of this
kind

fA*‘lgul lwy, =kl £ 21 - e fA“‘D‘.’.‘

ad the Stampacchia’s well known global lemma analogous to lem-
ma 3.7 (see [211).

Now we pass to consider the gradient estimate. With the barrier
technique (see Serrin [191) it is not difficult to show that
for R small enough, there exists a constant K depending on the
2 norm of @ such that, if u, is a solution to (3.15) then
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(3.16) | u, (x) - uy ()£ Klx - vl

for every x&Bp, every y & dBg and every A with 04 £ 1.
Now from (3.16) and proposition 3.6 (see theorem 2.1 of L 9]
or theorem 1.4 of [10]) it follows

Il Du, “ao ;ER &£ C

where C depends on the C2 norm of ¢ on BBR and does not de-
pend on A . q.e.d.

It is now clear that if @ is smooth and one is able to
construct barriers relative to the functional F, for an open
set {L , then problem (3.7) has a unique smooth solution on
which takes the bound ary datum ¢ . We do not enter this ques-
tion.

To close, we remark that x1/3e Hl'l(-l,l) is an extremal

for the functional

P[n]=f:\/1+ﬁ2-3_[4 “

1 1+9ut

This, perhaps, may show the relevance of the hypothesis of con-

vexity on g(x,u).

Note
(1) F(x,ap + (1-24)q) £ AF(x,p) + (1-A)F(x,q) for eve-
ry A e (0,1), the equality sign holding only if p and q lie

on the same ray from the origin.
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