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Abstract: In this paper variational problem with gene-
ralized area functional is considered. This functional is
defined for the BV- functions by the explicit integral for-
mula and the existence of weak solutions is proved. The ex-
ample of interior nonregularity is givem and the sufficient
conditions for the interior regularity are found.
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In this paper we deal with functionals

(0.1) Flul = Ll £(x,Du)dx

where f(x,p) is a continuous and convex in p function with
linear growth, i.e.

»|plé flx,p)éM(1 +|pl)

and we consider the problem of minimizing F [ ul] under Di-

richlet boundary conditions, i.e.
u=¢ on dN

Work partially supported by GNAFA for the first two au-
thors and by C.N.R. for the third.
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The area functional, the functional
(0.3) j;l\h s 1x12 V14 iul?

first considered by D. Bernstein [ 3], and then by J. Serrim

[19], and the functionals
fn(l +o(x) | Dal®)1% ax | k>1

sre simple expmples of functionals we shall consider.

Boundery curvature restrictions are necessary for solva-
bility of the Dirichlet problem for Euler equations of (0,1),
in ciassea of smooth functions, as it was pointed our by Jen-
kins and Serrin [12] (see also Bernstein [3]), and inquired in
general setting by Serrin [19]. Moreover, some structure condi-
tions on 3 have bo be imposed (Serrin [19]).

We first deal with the questiom of defining appropriate
generalized solutions when the curvature relations do not hold.
In fact we extend the functional (0,1) to the space BV(.Q) of
functions whose derivatives are measures with bounded total va-
riation, giving an "integral representation”; then we prove,
using a result by Reschetniyak [17], semicontinuity for this
extended functional and then existence of generalized BV solu-
tions to the problem (0,1) (0.2). Our extended functional
will coincide with the natural semicontinuous functional con-
structed analogously to the Lebesgue definition of surface area
(see Serrin [18]1) but, furthermore, our "integral represented"”
extention will allow us to inquire on the regularity proper-
ties of the minimum points.

As a matter of fact we shall study more general functio-

nals of the following kind
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fn[f(x,Du) + g(x,u)] ax

but we shall not study the general situation

(0.4) jn f(x,u,Du) dx

because we are not able to obtain an "integral represented”
extention to BV of the functional (0.4) consistent with the
semicontinuity theorem (see the end of paragraph 2). Obvious-
1y the Lebesgue analogous extention still holds, but this does
not enable us to inquire on regularity of minimum points.

The existence theory for the functional (0.1) has mmeh in
common with the one for the non-parametric Plateau problem im
BV(N), but as we shall see (examples 3.1 and 3.2), in our mo-
re general situation generalized solutions may have .jumps not
only on the boundary but also on-the interior; that is, it may

Hl'l functions.

occur that solutions are not
For a class of functionals, including for example Bern-
stein’s functional (0.3), essentially those for which an a pri-
ori estimate of gradients holds, see Ladyzhenskaya and Ural ‘-
tseva [13], we are able to show that generalized BV solutions
are smooth on the interior of f) , with jumps still possible
on the boundary. Proofs of regularity use an idea by Gerhardt
[7] and techniques analogous to the ones in Giaquinta [9], Gia-
quinta and Modica [10].
Finally we want to remark that many problems are left still
open in this setting, for example the study of general case
(0.4) and of regularity in more general hypotheses.

1. The space BV (1) We begin by recalling some well-

known definitioms and theorems. The reader may consult [14] or
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[2] as general references.

Let ) be a bounded open subset of R, BY(Q ) is the spa-
ce of the Lebesgue summable functions, whose derivatives are
measure of bounded total variation on fl . Du and |Dul denote
respectively the vector valued measure whose components are
the derivatives of u and the measure total variatiom of Du.

BV(N ) is a Banach space with the norm

bull gyq) = J:Qlu(x)ldx + _[alDul

where Inl Dul is the total variation on () of the measure | Dul.
We shall now state a few theorems which will turn useful

later on (see [15],0[2])

i) The immersion of BY(Q) in 12(N) is compact, i.e. let

{u,} be a bounded sequence in BV(£), that is

S ugh v i Dugle u MeR,
then there exists a subsequence which converges in Ll(.n.) to

some function u belonging to BV(f.). This is the analogous of

the Rellich theorem for Sobolev spaces.

ji) Let £ be a Lipschitz domain with L as Lipschitz constant.
For every ue BV(f) the trace of u is defined, and we have the

following estimate

lulad ® e V1 + 22 [ iDul+ () Jylulax
Also, the Green formula holds, i.e.
D;g u dx + f gD u= f u gy, d.‘H,n"l Vegec®n)
n 1 gy 1 on 1 ? [+]

where » = (vi) is the exterior normal vector to &JL .

iii) More generally, let =\ be a (n-1)-dimensional oriented
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Lipschitz manifold in {1 with normal vector » . For every
ueBV(l) the left trace u~ and the right trace ut of u are
defined on = , and we have

= (u -uh) v H n-1

Diulz‘

IDul g = lu - w oz e

Let us consider a bounded open set NQ* such that Q*> J.Q.;
then every g e Ll(a.f). ) may be extended [6] to N*\ N as a
¢ e BHI(Q*\0) with §(pq4 = O

Definition. For every ¢ € an ) BV () is_the spa-
ce of functions u in BV(N*) such that u =¢ in ND¥*\ N .,

Observe that the space BV¢ (£l ) does not depend, in an es-
sential way, on the extentions 2* of 1 and ¢ of @ .

From i) and general results in measure theory it follows
that from every bounded sequence {uk§ in BV¢ (f1) we can ex-

tract a subsequence {“k.} such that
i
u,.—> u in 1l(n*)
1

Du, —>Du weakly as vector valued measures.
i

We shall say that -(uk'} converges weakly in BV(R¥) to u.
i
Note that u belongs to BV¢ (1) and that Du may have support

on 9l even if Du, have support on Sl ; that is u ean have a

jump on 2N even if u, have no jumps on 3. .
i

We could define the space BV¢ (fl) in a different way
(see for a general treatment [ 20)) which, maybe, can make things
clearer. For every o e Ll(a.Q.) let us define the space BV¢(J-7.)
as the spvace of functions u for which there exist n measures

e"i on .-S-). such that the Green formula
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Lups+ S oe%s = fm“svi , Ygec®)

holds.
Now it is easily seen that BV (f1) is the "restriction” of
BVy (1), and BV (N) is an "extention" of BVg ().

2, Existence theorems. Let {l. be a bounded Lipschits do-

main and let £(x,p): A x R®—> R be a continuous function

which is convex in p and satisfies the condition
(1.1) »| pl&2(x,p) <M1+ | pl)

where » , M are positive constants. Consider the minimum pro-
blem

Flul= fn £(x,Du) dx—> min
(1.2)

u =g on 30

where ¢ e tt(an).

The functional F([w] is well defined in H?1(). So we
could look for & minimum on the set of ue nl-l(n), u=g on
8fl . But we cannot use direct methods of the calculus of
variations, because the space BI’]'(.Q.) does not have weakly
compact balls; on the other hand, it is well known, think for
example of the non-parametric area problem, that there is no
hope of obtaining 81'1‘ solutions u = ¢ , while, still consi-
dering the non-parametric area prgblem, the appropriate genera-
liged solutioms are BV (f.) functions.

We now want to extend the fumctional F [u] to a functio-
nal ¥ [ ul defined on BV (1) and prove the existence of a
minimum point in BV g (N1) for Flul.

We define for every (x,p) el »R and for every p > o
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the function

— p

T(x,p5p) * £{x,5) B,
Clearly ?(x,po,p) is continuous in £ x R, xR , convex in
(p,»P), and homogeneous of degree 1 in (p,,p).

Proposition 1.1. The following is true:

al) There exists the limit of ?(x,po,p) for Py going to 0+,
s,) T(x,p ,p)< M(p, + [pl)
f(x,pp) 2 ¥ | pl

-3) £ is convex in (po,p) where p 20, p¢ R , angd homoge-
neous of degree 1 in (p,,p).
Proof: ¥(x,p,,p) is comvex, locally bounded and continu-

ous in (po,p); then for every fixed p there exists

@120,‘, -f(x,po,p) = ?(xiolp)
a

Prom (1.1) and the convexity of f it follows
[ £(x,p) - £(x,q)| & M |p-ql|

80 that

- - 9‘2' - L)
| $(x,0,p) - F(x,0,a)| =\ jin ZAI-L06A8) | L o

A4+ A
and then al) is proved. The proofs of a2) and 03) are trivial.
q.e.d.
Let us choose a positive Radon measure @ in such a way
that | Dul and the Lebesgue measure " be absolutely continu-

d dD
ous with respect to ¢ » and denote by 'd.—:. and ﬁ the Radon-

Nikodym derivatives respectively of the Lebesgue measwre :gn
and of the vector valued measure Du with respect to the measu-

re w . We define for every ué BV(N)
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(1.3) F Cul-= [n_‘f(x,%, % ) du o
Observe that this is a well posed definition; in fact from
the homogeneity of f it follows that 3L ul does not depend on
the choice of the measure w ; &lso, clearly, for every u &
erlrl(n)

3Jful= Flul.

For example, if 3 is the non-parametric area functional,
F is the total variation of the vector valued measure ($7,Du),
which is just the definition of the area for a generalized BV
surface.

Now we recall the following semicontinuity theorem due to

Reschetniyak [ 171

Theorem 1.2. Let F(x,p): L xR™—» R be a continuous

function which is convex and homogeneous of degree 1 in p. Con-

gider the following functional defined on the space of the vec-

tor valued measure with bounded total variation:

Itel = an(x, B%S;_l ) dlwl -

Then for every weakly convergent seguence {(“'A} of measures,

i.e. M= o we have

1i inf IC 1z1IC 3.
J-i-—»m “a “o

At this point we are ready to show that problem (1.2) has
a generalized solution in BV¢ (fL). Extend £(x,p) toQ*oo N
as continucus function in (x,p) and convex function in p (we
continue to call this extention f); construct the function
f"(x,po,p) and consider the functional, defined on BV (n), as
in (1.3)
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— =, dx  ddu
(1.4) 3’_&#[ .&ﬁf(x,w, _d'T“—— ) du

where ¢ € El 1%\ ) with =9 ondfl and ¢ =0 on
9N* + Then we have

Theorem 1.3. There exists a minimum point for the pro-
blem

%El*[ ul—> min
w0

USBV¢(.Q) .
Proof: This follows using the standard direct methods
of the calculus of variation, if we just remark that the func-

tional 3 , from Theorem 1.2, is lower semicontinuous with res-

pect to the weak convergence in BV¢(51) and

Fpelulz» [ Il Vuebvy ()

and the Poincaré inequality
[elulzc) [ \pul
holds. q.e.d.

Now observe that for every u in BV¢ (1) we have

Fpelul = [ (x,d; ii:" Jap + J Fx,0 %)m“‘h

+ [ f£(x,0¢) ax
a0
and that

dDu o o )
d’ﬂn-" la.ﬂ, =PYle - “Ia.n.

where 2 is the exterior normal vector to d.fl .

Then we have proved

Theorem 1.4. For every @ € Ll(aJI ) there exists a mi-

nimum point for the functional
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-(n ?(x,%,—i—%&-)d“ + J‘;n #(x,0, »(g-u,,)) ai Tl
in BV(0 ).
These minimum points are the ones which are to be consider-
ed the appropriate generalized solutions for problem (1.2). This
will clearly show on behalf of the rest of the paper. The two

following examples may, however, be a justification.

Let f£(x,p) = V1 + \p\2 , that is, if we consider the non-
parametric area problem, we have f(x,0, »(® - ujgg)) = lu-gl;

if £(x,p) = Va (x) + aid(x)pipj' for some definite positive mat-
rix a; ;(x) and a (x)>0 we obtain £(x,0,» (¢ =u,5)) =

= Vayy(x) vy 9j|q - ul.
. Remark 1.5. Let = be an oriented (n-1)-dimensional Lip-

schitz manifold in £l ; with the notations of iii) of paragraph

1 we have

dx dDdw - + - -1
f, ?(:,;—;,W Jau = .f,_ F(x,0,» (" -uw) a# ..
Now we want to relate our functional 3_0_* in (1.4) with

the one constructed analogously to the Lebesgue definition of

surface area (see Serrin [18]), i.e.
" 1,1 1
Plul = inf{l?_’%nfst (o d:u e BpH(A¥) u—>uin L (n¥)g.
From the semicontinuity theorem for F and (1.1) we derive

that
Plul z 3, (ul VueBVg ().

On the other hand, it is well xnown ([11,(21) that for every ue
[ B"(n) there exists a sequence {nk} in ¢%(Nn*) such that
u—>u in Rt L)
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St ol —> [ IDul .

Then from the following theorem still due to Reschetnigak [17]
it follows that for every ue BV, (1) there exists & C®(n¥*)
sequence {uk} such that

uy—> u in lear)

Falul— F,lul.

Theorem 1.6. Let -[(u&l be & sequence of vector valued
measures weakly converging to & . Suppose that there exists
& continuous function F(x,p) which for every x is homogeneous
of degree 1 and "etrict;x"(l)convex in p and such that

d
(1.6) &F(x,a;—tﬁ) Al — [, r(x,:l—“:”) alw

Then (1.6) holds for every continuous function F(x,p) homoge-
neous of degree 1 and convex in p.

Remark 1.7. (See [1].) Suppose that ueBV¢(.n.) and that
f’nl Dul = 0. Then for the C¥ (%) sequence {u } above we
have

u,—> u in 1 a*)

dx ddu =, dx ddu
'[:ﬂ-?(x’—dp '_&d‘u ) d‘u.—&f_.n f(x,—d‘“ "da ) a
uk'an—-b Yan in Ll(a.ﬂ.)

We now want to spend a few words to consider some simple
generalizations of the above situation. Let g(x,u) be a func-

tion which is measurable in x and continuous in u such that
(1.7) u — L g(x,u) ax

is a lower semicontinuous functional with respect to the Ll(.ﬂ.)‘
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convergence. Moreover suppose that we have an estimate of this

kind

(1.8) [ [ gxu)léew (1-eg,) Jitoul+e

where ¢, is some positive constant less than one, 2 is the
constant in (1.1) and ¢ is some absolute constant. Then it is
obvious that we obtain a generalized solution for the minimum
problem

fn { £(x,Du) + g(x,u)} dx—> min
o |

u=g on 9 .

Without going into further detail one of the two following con-
ditions grants the lower semicontinuity of the functional (1.7)
8)) lslxu)l £ k(1+ L uf)

8,) g(x,u) convex in u.

Condition (1.8) is less _simply verified. It occurs in an
analogous way studying the Dirichlet problem for surfaces of
prescribed mean curvature. For example it is satisfied in situ-‘
ation sl) if we suppose that the constant k is small enough
and in situation s,) when

1/n

I t]-'in:v max (g,(x,t),0) | € no,

()

1/n

il t':l’i:nb min (g, (x,t),0) | £ noy

()
because of the comple te analogy with the ILirichlet problem for
surfaces of prescribed mean curvature, we refer to [81,l91,f111
for a discussion of sufficient, and, in some sense, necessary

condition to grant the estimate (1.8).

To close this paragraph we want to justify the reason why
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we do not study the general function
_fnf(x,u,Du) dx.

If u belongs to BV(Q ), then (Federer [41,[5]) the limits of

n'l-n.e.; on the other hand |Du) is

the average of u exist #H
absolutely continuous with respect to #H n_lz so that we can
redefine u in such a way that u is a w -measurable function
where, for example, w = o™ + [Dul. And then we could define

the general functional

= _ = dx dDw

JLul= In f(x,u,d—‘w—,'—d‘u—) du -

Unfortunately this functional is not lower semicontinuous
with respect to the weak convergence in BV, The following ex-
ample shows it.

Let fe C®(R) with £(1) = £(-1) =g , £(0) =1,84« f££1

and

'f: f(u)du = 2e + c<?2

with ¢> 0. Consider the functional

1
FLuls= £1f(u)lml

For a sequence {uk} of smooth non-decreasing functions with
u (-1) = -1 w (1) = 1, which weakly converge in BV(-1,1) to
the function u(x) = sign x, since u(0) = average of u = 0, we
have

JCul=20u() =2

1 , 1
Flud = L1f(uk) ug dx =_£1f(u) =2¢ +c<2 .

In this situation we had defined u(0O) = -1, all would turn
put well, but only for this special f and special -{uk?. In fact,

it is not difficult to verify that any pointwise definition of
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u(0) does not allow to obtain semicontinuity for the general
functional.

All the references can be found at the end of part II
published in this issue.

(Oblatum 1.11. 1978)
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