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ON THE REGULARITY OF WEAK SOLUTIONS TO NONLINEAR ELLIPTIC
SYSTEMS VIA LIOUVILLE'S TYPE PROPERTY
M. GIAQUINTA, J. NECAS

Abstract: Let u be a weak solution with bounded gradi-
ent of a nonlinear elliptic system. In the present paper it
is proved that the first derivatives of u are H8lder-continu-
ous if the system satisfies a Liouville’s type condition. This
condition, roughly speaking, means that every solution defined

on the whole R® to the system and with bounded gradient is a
polynomial of at most first degree.
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§ 1. Introduction. Let N2 c R®, nZ2, be a bounded domain

and let us consider a nonlinear elliptic system

h

(1.1 - - (el (x,u, VW] + & (x,u, Vu) = - %2 4,

v 1

r=1,2,...,m, where ue [ W'® (0 )J®, V u is the set of the

“p v ) 3o da’% da’%
oxy 0 B0 Ee) T e a3

derivatives

are continuous functions on {l x R". R, fi‘ewl;P(Q_),

1':27-! W), p>n,

e w

(1.2) -gf‘—%- (x,§,7)93i75>0 for 7 # o,
"la', J

amd the summation convention is used.

Here WS'P (0 ) denotes, as usual, the Sobolev space of
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1P(1) functions whose derivatives up te order k are alse
1P(Q ) functions.

We say that (1.1).(1.2) is a reguilar system (R) if a
weak solution u belengs to the space rcl""’ n )]-, where, of
course, cle (L) is the space of continueusly differentiab-
1le functions in {1 whese derivatives are lecally oc -H¥lder
continuous,

The history ef the regularity problem is described in
the boek by O.A. LadyZenskaja, N.N. Urel’ceva [1], in the pa-
per by Ch.B. Merrey [ 2] abd elsewhere. It is well known from
the result ef E. De Giorgi [3] that, for m = 1, the single
equation (1.1),(1.2) is regular. By virtue of a counter ex-
ample of J. NeZas [4], there exist systems (1.1),(1.2) which
are net regular fer mZ5; this question is atill open for n =
= 3,4. Sufficient cenditions for the regularity are also ef
interest, see M. Giaquinta {5], J. Nelas [6]. Since the exam=-

ples of the regularity are ['l,oo (R*)]™ solutiens to & system

o -
(1.3) ax,t['i(v"” 0

of the type
(1.4) Ix-x_| &g K=o
o (l.x-.xol) !

and in virtue of a trivial fact that a cl(F") vecter function
of the type (1.4) is a pelynemial ef at mest first degree, we
see that the regularity implies weak Liouville ‘s preperty: we
say that the system (1.1),(1.2) has weak Liouville ‘s property
(WL), if for every e 0, § é R®, every functien v with

a bounded gradient ef the type (1.4), selving in R® the sys-

tem
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O rr e =
(1.5) - 'a—\xi[‘i(‘ ,g,VV)J =0,

is a polynemial (more exactly, a vecter ef pelynemials) ef at
mest first degree. We speak about Liouville's property (L) if
the same is true without suppesing (1.4).

We preve in this paper by the "partial regularity" met-
hod, see Ch. B. Morrey [ 7], E. Giusti, M. Miranda [ 8], E. Giu-
sti [ 9], M. Giaquinta [ 5], that (L) == (R). In this connectien
3! relations can be thought ef between (R), (WL), (L) (some
are trivial), especially (WL) év (R), (R)-—io (L).

Censidering the solutions to (1.3) in the form (1.4), we
can get, see J. NeZas [6], that, for m = 1, nZ2, we have (WL).
Because there is still seme hepe that fer n = 3,4 we get (R)
for the systems (1.1),(1.2) it is net unthinkable that we ha-
ve the property (L) fer n = 3,4, which would be a way how te
preve this conjecture.

Clearly there are many other interesting questions, as,
for example, how to avoid the condition u ¢ [ W''® (Q )J™®; this
seems to be pessible via seme growth conditions.

We alse prove (in § 3 ef this paper) an easy result that
for the systems (1.1).(1.2) and fer n = 2, the property (L)
is satisfied. Se we get once mere the known result that fer

n = 2 we have (R).

§ 2. lLemmas. Let us first introduce seme notation:

1
t T —— (x)a
pu “x.,R mes Bp(x ) Bo Jf;,) b =

where Bp(x,) is the ball with the center x, gnd the radius R

and
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-5 2

xR = B® [ Jux -u, gl ax.

o By “Cxo) XqsR

Let us mention the result ef S. Campanato [10): if
u e W32 (B(0,1))n 12(B(0,1))]"

is a weak solution to the equation with constant coefficients

g({ﬂ btilgpi"hn.i ¥y ax = 0, Vyeld (B(0,1))1™,

then fer every 0 < @ < 1 we have
(x) U(O,pléc 502 U(0,1), where c depends on max\b!i‘]? |
J
and en the constant o¢ ef ellipticity:
hx , h , k 2
bisil; zxlInl®.
First we get a medification of the main lemma from [8],
[9J3,[51.
Lemma 2 ) N 1,2(q 13N
moa 2.1, Let ve [L¥(02)]) n [w ()] be & weak
solution to the system
hk “,hk : -
(2.1) _rn l'Aij(x,v)Divhl)‘j ¢ + Ay (x,vID vy gy lax =

= 'J.‘n [‘}JEDJ Py * & @ Jax,

where fl ¢ R* is a bounded domain, ‘?g(xvf )y At{k &, § ) are
continuous functiens in o x R“, 135 13(11), ;ke Ly ),

1
p>n,

@2 A, nia X>0 fer 7 4 O.

If x, € Nl and Rﬁdiat(xo,aﬂi we put v = v¥ + w, where
we Hi(B(x.,R)) is a solution to

(2.2°) "!’M[Aﬁ(x,v)niwhnj gy + A5 (x,v)D;my, ¢, dax =
-]
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= k k
= f Lg; Dy * € @y Jax.
ac«,,m
Then for every € , 0 < T < 1, there exist € =

= g (w,lvly), Ry = R(z,lvly) such that if
Rgnin(R‘,dist(x.,aﬂ)) and if

2
(2.3) VX (xg,R) < €]
then
(2.4) V¥ (x_,R)£2¢c 22 V*(x_,R)
. o? = 0!V

where the constant c is from (X ).
Proof. Let us suppose the contrary. Then J«v, x‘,eﬂ’
€y —> 0, Ry— 0, v"e[Hl(n)JN, [v”leélvle, such

that v*‘(’”(x,, Ry ) = ei‘, . \r"‘(”)(x)> , ¥Ry ) > 2¢ w2 eg .
-1 % EY
Put x = x + R, ¥, s (y) = €, [v’“’(x,,-r R},y) - vx)’,R),] .
We have f | s (y)\zdy = s¥(0,1) = 1,
B o,
(2.5) s¥ (0, %) >2c 22,

Put further t? (y) = w"(x9+ R,y) (v”= . 0’3). Then
we can suppese X ,—p X, & f, 8¥— s in L,(B(0,1)),
e, 8> (y)—> 0 almost everywhere in B(0,1). We have

%

(2.6)  v¥(x + Ryy) =8 (y)g, + Ryt ¥ (y).

Since

(2.7 i) lw”)? axéec R D, w> D, w’ dx
B(x,,R) ! acx{,k,) 17h TR T

we first get that (2.2) is uniquely solvable for R, s:all
enough. We further get from (2.7) and (2.2) that

@ [ 1¥ (y)12ay 4,211
B to,0)
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80 we can alse suppese that £ (y)_> O almest everywhere.
Hence from (2.6) it follews that we can suppese vxyR Y

—*f € o and therefore

»
Agg(x,,'* R,,y,s”(y)s,, + v

X, * TN A, 6

almest everywhere in B(0,1). Hence we get that a”-—-y s in

(w222(8(0,1))2" and that

hk -
(2.9) s'[o, AS(x®, §)D;8 D 9y dy = 0

Yy e [P (BO,1]IN.

Thus we have
2 2
(2.10) S(0,®)£c x° S(0,1) c =%,

which is a contradiction with

(2.11) s(0, ©) >2¢ ¢

ebtained from (2.5).

Lemma 2,2, Under the conditions of Lemma 2.1, for eve-

f, there exists a

B(x,,R) )& .. such that vec“'(m;)) with ¢ = min(%,l- %‘).
Proof. We get by a standard argument that if o> O

is small enough, | X - xgl<d” , and Rg=R-1X - x,l , then

v (X,Rg) < ei. If v = v¥+ & in B(X,R-), we first have

ry peint x, & fl such that v (xR < ©&

(2.12)
sy

£ec nén;‘“ Prsr f lf’l’dxj1~+

+S(f |f!‘|; dx)*] £ c3R; zm-% s

lewf dxéclai f lDeo\zdxé
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Thus

(2.13)  V(, ®Rg)£ 2V* (%, ©Ry) + 20.(K, ¢ Ry) £

n
£ 4c /UZV*‘(E,%) + 2‘3]‘?2“-;) xn £

u 201-%)
£ 8c ¥2V(Z,R.) + 8c 2o R R 2c x 0 ®.
Rg 3R 3¢ Ry

Cheese ¥ € (0,1) such that 8% = 9¢ £ 1 and small eneugh.
We get frem (2.13) that

201-%)
(2.14)  V(X, ¥Rg)# 8 2% V(X,Bg) + ¢, Ry T -

For k being a pesitive integer, we get frem (2.14) that

(2.15)  V(X, "Rg) € =¥ v(%,R) +

n
-
2¢1-2) c (o0 £ 2R

+
TBENTPY SLILEE AN

If O< @< R -0 and if we choose k such that ek+lni<§, &
e 11‘3;, we get znV(i',so) & (?%R—)”V(f,sp)ﬁV(f, 'Bkﬂi) &
% 2(1-%)
E
2(1-%) u&‘_’- + R'L
‘-E;’? V(X,Re) + c, Rg g _Ec__(_l_'ﬂ){_ , and using

l”z, ;61(1‘1,)
{1031, we get the result, q.e.d.

§ 3. Main results

Theerem 1. Let ug [W)'® (0 )I™® be a weak solution te
(1.1) and let the cenditions on ni, a’, fi, 7, 0, mentien-
ed in § 1, be fulfilled. Let the system (1.1) satisfy the
Liouville ‘s property, i.e., for V¥ x%e¢ Q0 and ‘V§ ¢« E® the
enly solution to (1.5) defined in the whole R" and pessessing
& bounded gradient is a pelynemial ef at mest first degree.
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Then u ¢ [ cl"’(n)l‘”, X = min(l,l -,
2 P

Proof. Let x°e 0 . Put up(y) = flux® Ry) - ux")),
x° + Ry = x. If O is the image of () we have
3, ()
r (] (-]
(3.1) jo Lai(x%Ry, Rup(y)+u(x®), V up(y)) —%— +

T

+ a"(x®+Ry, Rup(y) + u(x*®), V gy IRy (y)]dy =

oy,
= J, LGSRy & £ 6O RRy, @) Jay.

let B(0,a)c O. We get in a standard way that

(3.2 [ DPug(y)1? ay£c(a).
3.2) Bif(‘),c) uply 1€ dy £c(a)
Hence we can choose Rk——-> 0 in such a way, that uRk—> P in
[wlr2(B(0,a))I™ Va>0. Thus p e [ W@ (R)I™ and it is a

weak solution te

r. e ° 9y, dy = 0
(3.3) fknai(x ), vyp)—

Vye LD (RHIM

Therefore, by assumption, p is a polynemial of at mest first

degree. So we have

(3.3°) Oe— | Duy (y) - Dpl% ay = R_® | Du(x)-Dp |2ax.
B(f0,4) By RkB(a‘[",Rk)

I ° is the aa derivative we get from (1.1) the equation

in variations

da% duwy 39w . 2a¥% , da% 2
Iy vl A RS A
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3 3w, aa® da” _
++u j?&*"?—%"“n?m*?;:%]d‘*‘
a?—&‘xia
= x O g% dx.
ﬁ[i‘_‘ P, +£%q, 1

Writing (3.4) for every

ai y t =1,2,...,n, removing the
-t
2 £ ~
da% 1 dgx day O, da* . da
terme du, “ 3x; ' Dxy ox; ' “auw, “r» Fn> dx, Y

te the right-hand side of (3.4), and deroting by Ve the de-

. X Ou 4 : da% rs
rivatives sy we get, with ——=%—(x,u(x),v) = by 5(x,v)
a‘xt ) Sy J
X
(and the same with a’;), a system of éhe type (2.1). The re-
sult fellews from Lemmas 2.1, 2.2 and from (3.37), because,
in decempesing v = v* + @ on B(x°,R) as in Lemma 2.1, we ha-
ve 0 (x°,R)—> 0 for R—> 0, as above, so V¥ (x°,R)—» 0,

q.e.d.

Theorem 2. Let us consider the system (1.1),(1.2). Let
n be the dimension of the space, n = 2. Then (L) is satis-
fied,

Proof. Let ve LWl ®@(R%)1® be o weak solutien to the

equatien

Oyn
an,_;

r.,_o s
(3.5) J;aai(x 27 dy = o.

Let T>0 and let 7 ¢ O (B(0,2T)), 0 & %1, 7 =1in
B(0,T), |Di')2|" -‘;}- . We get the equation in variatiens

da v, &
(3.6) fe Tﬁ(x.’ g.vv)T;*—.T;Efdy = o.
*F

Putting ¥ = vr',qz, we get from (3.6), using the bounded-
ness ef the gradient, that
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(3.7 { \ov'129 2 ay£c,.
8 {0,2T)

Hence J;zl bv’|2 dy < co . But there exists qrne [ (R

such that Dy™ 5 Dv’ in ELQ(Ra)]a' (and there exists A"¢ B®
such that A" + y"— v’ in fLioc(Rn)]m. Hence

x £ f

et B e
& +

X »

F 4
and thus v is a polynomial of at mest first degree.
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