

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20, 1 (1979)

FACTORING UNCONDITIONALLY CONVERGING OPERATORS J. HOWARD

 $\frac{\texttt{Abstract}}{\texttt{coperator}}: \text{ It is shown that an unconditionally converging operator factors through a Banach space containing no isomorphs of c_0^*.}$

Key words and phrases: Unconditionally converging operator, Banach space.

AMS: 47A05

An operator T mapping a Banach space X into a Banach space Y is unconditionally converging (uc) if it maps weakly unconditionally converging (wuc) series of X into unconditionally converging (uc) series in Y. On page 260 of [2] the usefulness of factoring a uc operator is pointed out. Cur aim is to show that such a factorization does occur, that is, if T is a uc operator, then T factors through a Banach space containing no isomorphs of co. The proof is similar to that for weakly compact operators in [1]. We use NX to denote the set {FeX": there exists a wuc series Σx_n in X such that $F = 6(X^n, X') - \lim_{n \to \infty} \sum_{i=1}^{n} Jx_i^2$. Here J is the canonical embedding map of X into X". Well known facts are that wuc series are uc if and only if X does not contain an isomorph of c if and only if JX = NX (see [3]). Let KX be the weak* sequential closure of JX in X". Note that KX and NX are norm closed in X". This is proven in [4] for KX and a similar proof holds for NX. Let W be a convex, symmetric and bounded subset of X. For $n=1,2,\ldots$ the gauge $\|\cdot\|_n$ of the set $U_n=2^n \mathbb{W}+2^{-n}\mathbb{B}_X$ (\mathbb{B}_X is the unit ball of X) is a norm equivalent to $\|\cdot\|_n$. Define, for $x\in X$, $\|\cdot\|_x\|_1=(\sum_{n\geq 1}\|\cdot x\|_n^2)^{\frac{1}{2}}$ and let $Y=\{x\in X: \|\cdot x\|_1<\infty\}$ and j denote the identity embedding of Y into X.

 $\underline{\text{Lemma 1}} ([1]) (i) \quad \forall \subseteq B_{\underline{Y}}$

(ii) (Y, || · ||) is a Banach space and j is continuous.

(iii) $j'':Y'' \rightarrow X''$ is one to one and $(j'')^{-1}(X) = Y$.

Lemma 2 JY = NY if and only if every wuc series is uc in W (as a subset of X).

<u>Proof:</u> We first show that the $\mathcal{C}(NX,X')$ closure of B_{Y} in NX is $j''(B_{NY})$. B_{NY} is norm closed and bounded in Y'', hence $\mathcal{C}(Y'',Y')$ - compact; and thus $\mathcal{C}(NY,Y')$ - compact. $B_{Y''}$ is $\mathcal{C}(Y'',Y')$ dense in $B_{Y''}$ (Goldstine Theorem), so $\mathcal{C}(Y'',Y')$ dense in B_{NY} , and hence $\mathcal{C}(NY,Y')$ dense in $\mathcal{C}(Y'',Y')$ dense in $\mathcal{C}(Y'',Y')$ is $\mathcal{C}(Y'',Y')$ closed (being $\mathcal{C}(Y'',Y')$) compact) and $\mathcal{C}(Y'',Y')$ = $\mathcal{C}(Y'',Y')$ dense in it.

Now, if every wuc series is a uc series in W (W \leq X), and \overline{W} denotes W together with all limit points of wuc series in W, then $2^n\overline{W}+2^{-n}$ B_{NX} , $n=1,2,\ldots$ contain B_{Y} and are 6'(NX,X') closed, hence they contain $j''(B_{NY})$. Since

$$\bigcap_{m} (2^m \overline{\Psi} + 2^{-m} B_{NX}) \subseteq \bigcap_{m} (X + 2^{-m} B_{X^m}) = X$$

it follows $j^*(B_{NY}) \subseteq X$, hence by Lemma 1 (iii), NY $\subseteq Y$.

The converse follows by using Lemma 1 (i) and the weak topology for uc series (Orlics-Pettis Theorem).

Theorem 3 Every uc eperator factors through Banach spaces containing no isomorphs of c_.

<u>Proof:</u> Let $T:Z\longrightarrow X$ be us and let W of Lemma 1 be $T(B_Z)$. Then the operators $j^{-1} \circ T:Z\longrightarrow Y$ and $j:Y\longrightarrow X$ previde the required factorization.

As in [3] we say T:X Y is weakly completely continuous (wcc) if T sends weak Cauchy sequences into weakly convergent sequences. As NX is to uc operators, so KX is to wcc operators and similar results can be obtained (see [3]):

Note that KX = JX if and only if X is weakly sequentially complete. Since it is a matter of using sequences instead of series, we state without proof the following.

Lemma 4 JY = KY if and only if W is weakly sequentially complete (as a subset of X).

Theorem 5 Every wcc operator factors through weakly sequentially complete spaces.

References

- [1] W.J. DAVIS, T. FIGIEL, W.B. JOHNSON, and A. PELCZYNSKI: Factoring weakly compact operators, J. Functional Anal. 17(1974), 311-327.
- [2] J. DIESTEL and J.J. UHL: Vector Measures, Math. Surveys 15, AMS, Providence, Rhode Island, 1977.
- [3] J. HOWARD and K. MELENDEZ: Characterizing operators by their first and second adjoints, Bull. Inst. Math. Acad. Sinica 5(1977), 129-134.
- [4] R.D. McWILLIAMS: A note on weak sequential convergence, Pacific J. Math. 12(1962), 333-335.

Science and Mathematics Department
New Mexico Highlands University
Las Vegas, New Mexico 87701
U.S.A.

(Oblatum 26.10. 1978)