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Abstract: It is shown that Vitali type covering thee-
rem does not hold for (centered) families of balls in Hil-
bert spaces and Gaussian measures.
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Vitali type covering theorems in finite dimensional Ba-
nach spaces hold not only for the Lebesgue measure but also
(under some regularity assumptions on the considered covers)
for arbitrary (lecally finite) measures (see [BJ, (M1, [F;,
pP. 147-150], (T] for more details). If we drop the assump~
tion of finite dimensionality the situation becomes differ-
ent. By a result of Roy O. Davies [ D] there exist distinct
probability measures on a metric space which agree on all
balls. This particular behaviour is not possible in the case
of Hilbert spaces. Indeed, if (#, ¥ are positive finite me-
asures on a Hilbert space H which agree on balls then
f exp(%“x + 342 du(x) = fexp(%llx +312) av(x) for
every ye& H, consequently fexp(i(x,y)) exp(%(x,x)) dqu(x) =
f exp(i(x,y)) exp(%(x,x)) d» (x). This implies that the
Fourier transform of exp(%(x,x))‘«' and exp(%(x.x))v coin-
cide, hence o=
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However, in this note we prove that Vitali type theo-
rem does not hold (even in a restricted sense, i.e. for the
Vitali system 7/, ed L[T]) for Gaussian measures in infini-

tely dimensional meparable Hilbert spaces.

Recall that a measure 7 in'R™ is called Gaussian if the-
re is a pesitive quadratic form A(x,y) om R® such that 7 (M)=
= }.&exp(-k(x,x) )AL x (where ¥ is the Lebesgue measure in
Rn); the nermalizing facter N is chesen se that f(lln) = 1.
A measure 2 en a separable Hilbert space is called Gaussian
if ar[] is Gaussian whenever x is a continuous linear map

of B onto R”,
We shall censtruct our example in H =.22; the clesed ball

in H with the center x and radius r will be denoted B(x,r) and
the clesed ball in R® (considered here with the .Zg-norm)

with the center in x and radius r will be denoted B (x,r).

lemma 1. There is a sequence (an) of positive real num-
" bers with =a < such that &“(tL")TBn(xt,r)),t:a £™C)
whenever C is an open cube in R® (with its sides parallel teo
the coordinate axes), r>0, Bn(xt,r)cc for every teT and
the family {Bn(xt,r),ts'r} is disjoint.

Proof. Let (.n) be the sequence of packing densities
of talls in R (see (R, p. 24] for the definitions). The
convergence of = L follows from (R, Theorem 7.1) and Da-
niels’s asymptotic formula {R, p. 90, formula (1)} . The in-
equality A tk./TBn(xt,r))é a, «£2(C) follows from [R, Theo-
rem 1.5].

Lemma 2, Let (nn) be the sequence from the preceding
Lemma and let 3 be a Caussian measure in R". Then there is
d’ > 0 such that 7 (‘L‘JT B,(x,,r))&5 &, whenever Ocr<d
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and the family {Bn(xt,r):te'r} to disjoint.,

Proof. Let C, be a cube in R™ such that 7(Rn - C )<
4 a . There is a partition ef C, into cubes L, (4 =1,2,...
-++,N) and positive numbers s, such that 5 LOM) £ » (M) 2
£2zy £ (M) whenever Mc C; (consider any partitien of Co im-
te sufficiently small cubes). Choose o> O such that
1-(1-2d )¢ 8. Then, "x‘ain; Lemma 1, we obtgin

n
T (1 Balxeor)) & 4314 25, [ @ <B“(}(:,u)cﬂ¢ B/ (x,,r)) +

N
*A-0- 20T LRCHT + 8, 6 0B day 3 LPC) a4
L4a, y(C) +a < 5a.

Theorem. There exist a Gaussian measure 7 in 12, .
subset M of £, and a subset S of (0,+ ap ) such that
(1) M is g -measurable and 4 (M)>0
(ii) SA(O,h)#% @ for each h>0
(iii) &lino"[ sup{y(U(B,B ¢ ¥} ; ¥ is a disjeint family ef
balls in £, with centers in M and radii belonging te
Sn(0,n)3] =o0.

Proof. Let (an) be the sequence frem Lemma 1. We shall
construct sequences Ri, Ty, €4 of real numbers and sequences
7’3 °f Gaussian mesaures in R ama » ; of Gaussian measu-
res in R such that
(1) 0< ;< ri< R €1/
(2) Rj¢ 271 min fej,1ci<i} tori 2,3,...
() 940y (0,R))21 - g4
4) ¥ :‘,'Ir‘ »j
(5) Ti(t'f'r By(xy,r;)) 45 &, whenever the family
{Bi(xt,ri);tsl‘} is disjoint
(6) 7By (x,r;+ g;))&2 73 (B (xjry)) whenever
sti(O,‘\'S‘.4 R).
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For i = 1 we can put Rl = 1, choose a Gaussian measure
D, = 71 such that (3) holds, then choese r,< R, fulfilling
(5) according to the preceding Lemma; the condition (6) clear-
1y holds for sufficiently small positive E;<T;.

The induction step is also easy. We may first choose
R;<1/i such that (2) holds, then find a Gaussian measure

V4 fulfilling (3) and then choose r;< Ry according to Lem-

ma 2; the condition (6) again holds for all sufficiently
small €;<r;.

Let ey : 22—>R be the i-th coordinate and let
Ty ,82 —_— Ri be the projection ints the first i coordi-
nates. From (1) and (3) we infer that there is a unique (ne-
cessarily Gaussian) measure 3 on £, such that fg(dr-z)dy(z)=
= [ g(x)ay;(x) fori = 1,... and any bounded Borel function g
en RE (ctu [GD). Put M =, # 7*(B(0,)); then (3) imp-
lies (M) =1/2- Let S be the set of all numbers r; + £ j

If ¥ is a disjoint family of balls in ,22 with radii in
Sn (0,r, + €,) put ¥y =4B(x,r)e ¥ jr=r;+ e} foris=
= K+l 000 o

Whenever B(x,r; + ¢;), B(y,r; + €;) belong to ¥; end
x4y we have 4(r; + ei)2< Ilx -y H2 & forix - arsy 2 +

+ 4.5;'.41% £ lax - oy 12 + 4 eg according to (2), hence

the family {Bi(wix,ri); B(x,ti + ei) € tfi of balle in Ri
is disjoint. Using (6) and (5) we obtain ¥ (U { B;Be ¥;3 )¢
¢ = {g (a7 @ (ayx,r+ €3)); Blx,ry+ eg) e $53 4

& & {p;(B;(ax,r;+ ¢ 3))5 Blx,ri+ ¢5) e $;3 &

625 { 71(Bi(ﬂ ix,ri)); B(x,ri"- 15 i) € gi}" 10 ﬂi.

Hemce o (U {B,B e V““%ﬁ.'v
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