

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

A NOTE ON THE EXISTENCE OF MORE THAN ONE SOLUTION FOR ASYMPTOTICALLY LINEAR EQUATIONS

E. PODOLAK, Princeton

Abstract: Consider the nonlinear operator equation Lu + N(u) = f with nonlinearity satisfying $P_0N(x_0) \longrightarrow 0$ as $\|x_0\| \longrightarrow \infty$ for x_0 in Ker L, P_0 being the projection onto Coker L. Under additional hypotheses we show that this equation has the property that for $\|P_0f\|$ sufficiently small, it has at least two solutions.

 $\frac{\text{Key words:}}{\text{degree, Leray-Schauder degree, homotopy.}}$

AMS: 47H15

Ref. Z.: 7.978.5

Introduction. Consider the nonlinear operator equation

(A) Lu + N(u) = f

where L is a linear Fredholm map of index zero between Banach spaces X and Y and N is a compact uniformly bounded map of X into Y. Using the notation $X_0 = \text{Ker L}$, $P_0 = \text{projection onte}$ Coker L, we decompose each x in X into $x_0 + x_1$ where $X + X_0 \oplus X_1$ and X_1 is some complement of X_0 in X. We assume

(H.1) Given $\varepsilon > 0$ and $k \ge 0$ there exists p > 0 such that if $\| x_1 \| \le k$ and $\| x_0 \| \ge p$, $\| P_0 N(x_0 + x_1) \| < \varepsilon$. In addition, suppose Ker L is one-dimensional and

(H.2) For any M, there exists a number R_o such that if $\|x_1\| \le M$ and $\|x_0\| \ge R_o$ $P_oN(x_0 + x_1)$ and $P_oN(-x_0 + x_1)$ are of opposite signs.

Then the followin result is known:

Theorem. Assuming (H.1) and (H.2), the equation (A) has a solution for each f in the range of L. Furthermore there is a number c depending on P_1f , where $P_1 = I - P_0$ is the projection onto the range of L, such that for $\|P_0f\| < c(P_1f)$ (A) has a solution.

Examples of boundary-value problems where essentially this abstract result is used can be found in references [1], [2], and [3].

The generalization of this theorem to the case where dim Ker L>1 is easily seen. Let $\{x_{0i}\}_{i=1,...,n}$ be a fixed basis of unit vectors spanning Ker L and let an arbitrary element of Ker L be denoted by $a \cdot x_0$ where $a = (a_1,...,a_n)$ $x_0 = (x_{01},...,x_{0n})$ and $a \cdot x_0 = a_1x_{01} + ... + a_nx_{0n}$. Instead of (H.2) assume

- (H.3) For any M there exists a number R_o such that $\|x_1\| \le M$ and $\|a\| \ge R_o$ imply $P_oN(a \cdot x_o + x_1) \ne 0$ and letting $\Phi(a) = P_oN(a \cdot x_o)$ be regarded as a map of R^n into R^n , assume for $R \ge R_o$
- (H.4) deg (ϕ ,0, D_R^n) \neq 0 where D_R^n is the ball of radius R in R^n and deg is the standard Brouwer degree.

Clearly for the case of a one-dimensional kernel, (H.3) and (H.4) are equivalent to (H.2). The result now reads as follows:

Theorem. Let L and N be as above with N satisfying (H.1), (H.3), and (H.4). Then for each f, there is a number $c(P_1f)$ such that for $\|P_0f\| < c(P_1f)$, (A) has a solution.

A variant of this result has been proved and used by Mawhin in the study of periodic solutions of ordinary vector differential equations. (See [4] and [5]).

In this note we extend the results mentioned above by showing that for $\|P_0f\|$ sufficiently small and $\neq 0$, (A) has in fact at least two solutions.

Section 1. Here we formally state and prove our main result.

Theorem 1. Suppose N satisfies (H.1),(H.3),and (H.4). Then for each f, there exists a number $c(P_1f)$ such that for $0 < \|P_0f\| < c(P_1f)$, equation (A) has at least two solutions. Here $c(P_1f)$ is the same constant needed in the previously mentioned work.

To prove Theorem 1, using the standard method for semilinear alternative problems, we rewrite (A) as

(1)
$$F(x_1,a) = 0$$

where $F: X_1 \times \mathbb{R}^n \longrightarrow X_1 \times \mathbb{R}^n$ is given by

(2)
$$F(x_1,a) = (x_1 + L^{-1}P_1 [N(a \cdot x_0 + x_1) - f],$$

 $P_0N(a \cdot x_0 + x_1) - P_0f)$

Here P_1 is the projection onto $L(X_1)$ and $L: X_1 \longrightarrow L(X_1)$ has an inverse which we have denoted as L^{-1} .

Let $D_k = \{(x_1,a): ||x_1|| + |a| \le k\}$ and let S_k be its boundary. Then we have

.Lemma 1. There exist constants c and k such that if $\|P_0f\| < c$, $\deg_{LS}(F,(0,0),D_k) \neq 0$, where \deg_{LS} is the Leray-Schauder degree. Furthermore these constants depend on P_1f .

Proof. Let

(3)
$$H(x_1,a,t) = (x_1 + tL^{-1}P_1[N(a \cdot x_0 + x_1) - f],$$

 $P_0N(a \cdot x_0 + tx_1) - P_0f)$

We claim that there exist constants, c, k such that if $\|P_0f\| < c$, $H(x_1,a,t) \neq 0$ on S_k . This is easily seen since if the first component of H is zero, by (3),

 $(4) \quad \| \ x_1 \| \leq \| \ L^{-1}P_1 \| \ [\sup_{x \in X} \| N(x) \| \ + \| \ P_1f \|] \equiv M$ and thus by hypothesis, there exists R_0 such that $P_0N(a \cdot x_0 + x_1) \neq 0$ for $\| \ x_1 \| \neq M$ and $\| \ a \| \geq R_0$ so that on the bounded set $\{ (x_1,a) \colon \| \ x_1 \| \neq M, R_0 \neq \| \ a \| \neq R_0 + M \}$ there is some constant $\alpha > 0$ such that $\| \ P_0N(a \cdot x_0 + x_1) \| > \alpha$. Thus picking $c = \alpha$, if $\| \ P_0f \| < c$ and $k = M + R_0$ we have $H(x_1,a,t) \neq 0$. This gives us that $H(x_1,a,0)$ is homotopic to $H(x_1,a,1)$ on S_k . But $H(x_1,a,1) = F(x_1,a)$ and

(5)
$$H(x_1,a,0) = (x_1,P_0N(a \cdot x_0) - P_0f)$$

so that

$$\deg_{IS}(F,(0,0),D_k) = \deg(P_0N(a \cdot x_0) - P_0f,0,D_k^n)$$

$$= \deg(\phi,0,D_k^n) + 0 \text{ by hypothesis (H.4)}.$$

It is easily seen from (4) and the subsequent inequalities that c and k depend on P_1f_{\bullet}

Lemma 2. If Pof + 0, there is a k1 depending on Pof

such that $deg_{LS}(F,(0,0),D_{k_1}) = 0$.

<u>Proof.</u> Let $k_1 = M + \wp$ where M is given by equation (4) and \wp is given by hypothesis (H.1) with $\varepsilon = \|P_of\|$.
Thus on S_{k_1}

$$G(x_1,a,t) = (x_1 + tL^{-1}P_1[N(a \cdot x_0 + x_1) - f],$$

 $tP_0(a \cdot x_0 + x_1) - P_0f)$

is a non-vanishing homotopy between $\Gamma(x_1,a)$ and $G(x_1,a,0) = (x_1, -P_0f)$. But clearly

$$\deg_{IS}(G,(0,0),D_{k_1}) = 0$$

since G is not surjective. Thus $deg_{LS}(F,(0,0),D_{k_1}) = 0$.

Finally we have

Proof of Theorem 1. Given f, suppose $\|P_0f\| < c$, where c is given in Lemma 1. Then there exists k such that $\deg_{LS}(F,(0,0),D_k) \neq 0$. But by Lemma 2, there is a k_1 such that $\deg_{LS}(F,(0,0),D_{k_1}) = 0$. Therefore there must be a zero of F between S_k and S_{k_1} . Thus we conclude that for $\|P_0f\| < c$, F must have at least two zeros.

Remark. Note that if $P_0f = 0$, the proof of Lemma 2 breaks down, and in fact Prof. Fučík has pointed out to me that the boundary-value problem with f = 0

$$-u'' - u + u(1 + u^2)^{-1} = 0$$

$$u(0) = u(w) = 0$$

satisfying (H.1) and (H.2), is uniquely solvable.

I would like to express my thanks to Prof. Fučík for the current formulation of hypothesis (H.1).

References

- [1] S. FUČÍK: Further remark on a theorem by E.M. Landesman and A.C. Lazer, Comment. Math. Univ. Carolinae 15(1974), 259-271.
- [2] S. FUČÍK: Nonlinear equations with noninvertible linear part, Czech. Math. J. 24(1974), 467-495.
- [3] E.N. DANCER: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations (to appear).
- [4] J. MAWHIN: The solvability of some operator equations with a quasi-bounded nonlinearity in normed spaces, J. Math. Anal. Appl. 45(1974), 455-467.
- [5] J. MAWHIN: Periodic solutions of some vector retarded functional differential equations, J. Math. Anal. Appl. 45(1974), 588-503.

Princeton University and Bar-Ilan University

(Oblatum 19.8.1976)