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Abstract: A measure-theoretical version of topologi-
cal entropy 1s defined as a new invariant for an invertib-
le measure-preserving transformation of a finite measure
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1. Introduction. Throughout this paper (2,5, «) neans

a finite measure space with the measure normed, and T is an
invertible measure-preserving transformation of the apace,
which will be referred to as its automorphism. The additi-
ve group of integers is denoted by I; hence (Ti,ie 1) means
the cyclic group of automorphisms associated with the trans-
formation T,

We shall denote by 3, = 3(F) the complete lattice
(with respect to the relation of inclusion) of sub- & -al-

gebras of F ; for a class of sets A c F  the notation

- 789 -



6 A means the element in } that is generated by A .
The 1»ttice operations in 3 will be designated in a custo-
mary way; we shall set
i
3'1':4'/\&/11"% tor B e 3 ;

this 4is done in accordance with the notation used in Par-
ry’s work [ 11, and we shall make use both of the notations
and of the terminology given in the work quoted without
further reference.

Especially, we shall employ the mod O nomenclature in
the spirit of Rohlin’s fundamental paper [ 2], writing mod o
or even a,8. ((4.), whenever more convenient for the sake of
clarity. Here a partition is taken as a class of sets, and
partitions studied in (2] are referred to as Rohlin measur-
able ,

To define the basic notion of this paper, a modified
version of topological entropy, we restrict ourselves to
the class Z = Z(%' ) of finite measurable partitioms, which
forms & lattice with respect to the relation 7 &« § (¢
is a refinement of 7 ); the lattice Z is taken as a sublat-
tice of 7 , embedded into } by the injective map g——>,§ =
= €§ . Recall from [1] that ?T = (6§ )p; in what fol-

lows we shall set
)
n n_ 7 -i
‘$=QT=,"\=__/°T for $ez.
Given 0< & < 1, we define, for ¢ € 2,

Ke,§)="Lgle,§) =minfcard (A):
tAct , C?A ©(C)>1-¢3,
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H(T,g) = H(T,¢) = 5 <uP

1 n
B, linweup & log L{e ,; )y

H(T) = H (T) = geeng H(T,g );

here the symbol card means the cardinality, which is, in
the case considered, simply the number of elements. We
shall call H(T) the asymptotic rate of automorphism T, re-
ferring to H(T,$ ) as the asymptotie rate of the partition
‘ with respect to T.

Note. The asymptotic rate was studied by the author
first in 1962 for the case of two-sided shifts; the quan-
tity L(¢ ,s ) was introduced in 1959 for investigating the
transmission of ergodic information sources over non-ergo-
dic communication channels (cf. [31,[41,(5]). The results
concerning the asymptotic rate were extended by St. §ujan
to the case of non-continuous measures (i.e. only additive
measures) in a paper to appear as a supplement to the jour-

nal Kybernetika this year.

Let us recall that (3',(14') and the space considered
are said to be countably generated if there is a countable
class Ac ¥ such that 6A =7 mod 0; (F,«) ie (to-
gether with the space) said to have a finite generator with
respect to T if there is ¢ € Z such that ?T = F mod 0;
then S is called a generator for T.

Since we consider neither Lebesgue measure spaces nor
comple te measure spaces only, we must make use of a more
general concept of aperiodicity , as given, e.g., in [6],
Sec. 2. Let us make the convention that, anywhere in the
sequel, by N is denoted the set of positive integers. An
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automorphism T is called aperiodic if C#40 mod 0 (C e 3),
ne N = there is DcC (De3), D+T™® D mod O.

In this paper a disjoint class of @-atoms A is =
said to be exhaustive if the complement (UA)® = D, cont-
ains no w -atoms. Assume that (F,«) is countatly gener-
ated. Then the class A is countalle; it is uniquely de-
termined mod 0. If A is empty, ¢ is non-atomic; in any
case, the non-atomic part » of measure w is defined as
the probability measure
(EnD)

@(D,)

(1.1) »(EB) =

(Be &)

for w(Dy)>0; @(D,) = O means that « is purely atomic.
Since D, is T-invariant, the non-atomic part of (T, ) may
be defined as the pair (T°,» ) where T’ is the restriction
of T to the set Do; we say briefly that T’ is the non-ato-
mic part of T (defined mod 0).

In what follows we shall set

(1.2) A(T) = {De A :1D = Dmoa 0}, qeN.

It follows from the finiteness of the measure that

‘LEJNAQ(T) =A .

We shall say that the number of atoms is essentially boun-

ded with respect to T if, for any qeN, Aq(T) is finite,
and

(1.3) lim sup % log (card( Aq(T))<+ o .
greco
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The entire paper is devoted to developing tools for pro-
ving the following theorem.

The Theorem. A necessary and sufficient condition

that a probability space have a finite generator with res-
pect to an automorphism T, is that (1) the space be count-
ably generated, (2) the number of atoms be essentially boun-
ded with respect to T, (3) the non-atomic part of T be ape-
riodic, and (4) the asymptotic rate of the & tomorphism T
be finite: H(T)< + o0 .

Moreover, if $ is a finite generator for the automor-

phism T, then card (; )2 exp H(T).

Remark. It will be shown in a paper to appear in the
next issue that, under the condition stated in the theorem,
there is a finite generator § for T with the property that
card (? )< exp H(T) + 1.

2, Invariance of H(T). Let us notice that the definit-
ion of the asymptotic rate H(T,g ) makes sense for any coun-

table measurable partition ; s the lattice of such parti-
tions will be denoted by z, = zots“). Ir h“(g ) means the
entropy of f € Z,, then the class
2= T (F) ={fe Z th ((§ I+ 0}
is known to be a sublattice of Zo; the entropy of an auto-
morphism T with respect to g € 2‘“_ will be denoted by
As immediately seen from the definition, L( ¢ ,g ) is

monotonic in both variables; especially,
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né?:}l’;(s,n)él&e,?), §,7 € 2o
Consequently,
(2.1) H(T,q )= H(T,g ) for n % f (g 'y E Zo)'

In the following proposition we assume that we are gi-
ven together with the space under consideration another
probability space (Q’,%F’, w'); by %/« we denote the
measure algebra associated with (3, w); T’ is supposed to
be an automorphism on 0’ (on conjugacy c¢f., e.g., L71).

Proposition 1. If there is an isomorphism between
measure algebras % /w« and F/ /(u,’ under which T and T’
are conjugate, then H(T) = H(T’).

It is because (2.1) is valid with 75 £ g mod O so
that

(2.2) 7 = g-‘ mod 0 =>H(T,7n ) = H(T,g ); €27 € Zge

In this paper we usually decompose measures instead
of the automorphism, keeping both T and ¥ fixed (compare
with the definition (1.1); to be consequent, » should be
restricted to Do there). The latter principle is employed
in the statement of the following

Proposition 2, If (6',(«,) is countably generated,
and if w is not purely atomic, then

H, (T) = H(T),

where » is the non-atomic part of @ - If « is purely

atomic, then H  (T) = O,

(w
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Proof. Let A be an exhaustive class of atoms. Since
A is countable, €, = A u{D°§ where D = (UA)C is a
partition in Z . If w is purely atomic, then $ £ ?o mod O
for any § € Z so that H(T,§)<H(T, §,) by (2.1) valid
mod O as well. If « (D )>0, let @ be the purely atomic
part of « (defined similarly as » in (1.1)). Since §,
is T-invariant, H(T, ?o) = 0; hence H@(T) = 0. The remain-

der of the proof is based on the inequalities
Lé,_(e,g)éla),(e,g) + Lile,§ ),
Ly(e (@Dt ¢relyle,§)

valid for any g € Z, and proved in Lemma 1.3 in [41 ,p.770

(cf. also the proof of Theorem 5.1, p. 783); hence it fol-
lows that, for any § € Z,,

Hy(T,§ )& H (T, € )& max (H, (T,§),BZ(T,§)),

which guarantees the validity of the proposition.

3. Shifts. A finite or denumerably infinite set A be-
ing given, let S, be the shift in AT (defined by (S,2); =

= zi+1) and set

[Z] S{zeAI:(zo,zl,...,zn_l) =Z} for ZeA’;

an elementary cylinder is defined as a finite-dimensional

c¢ylinder of the form S;i[EJ , i€I, ZeA®, neN. The class
of all elementary cylinders, denoted by VA’ is taken as the
open base of a topology which makes from AI a Polish space.
The &6 -algebra of Borel sets in this space will be denoted

by FA: FA = e’VA. In our terminology Borel measures are
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those that are defined on PA and normed.
For the sake of brevity, let us denote by [E], Ec AR,
the set U {[T]1:ZeB}, and let us set

(3.1) Ko(Sy) = 4zeali(s)%z = 27 ;

it is Borel because
iqQ r,q, ,
Kq(SA) = bre\l (S‘) [A®] ; qeN,

Lemma 3.1. A Borel measure « which is S‘-invariant,
is non-atomic if and only if :

Q0
(3.2) «(K(S,)) = 0 where K(s,) -$L;J4 Kq(sA)‘
Condition (3.2) is necessary and sufficient for (Sy, ) to

be aperiodic.

The facts summarized in the lemma are well-known and
may be easily established. They show that the definition
of aperiodicity given in Sec. 1 coincides for the shift
with the usual one (the same is true for Lebesgue measure

spaces).,

A point ze AI is called regular (with respect to the
shift S,) if there is an S,~invariant Borel measure g
which is ergodic with respect to SA and such that ( A g is
the characteristic function of the set R)

m-1 i
(3.3) “g(E) = lim (l/n)‘;’:.i'.0 1 g(8,2)

for any leYA; the measure (g i8 uniquely determined by
the regular point z., The set of all regular points in AI
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will be denoted by R,; it holds that Rer,,

(3.4) (4Ry) = 1 for any « Borel and S,-invariant.

Cf. [5], Chapter 2, where an elementary theory is built up
without making use of topological concepts, for the more
difficult case of A countable,

Lemma 3.2. If w is a Borel measure which is -§, ~inva-
riant and non-atomic, then
@izeR,: w, is non-atomic} = 1,

Proof. Making use of (3.4) and lemma 3.1, we obtain
that (R, - X(5,)) = 1; set

(3.5) R: ={chA: Uy = @zt zeR.

It follows from the theory of regular points (cf.[5], loc.
cit.) that (wz(R:) =1 (\Ri Borel). Then the assumptions
zZe R‘_, z§ K(SA), (%, is not non-atomic lead to a contra-
diction because the last implies that (a.z(K(S‘))>O 80
that (uz(R:nK(SA)bO. From the definition (3.1) it fol-
lows that z e K(S,), z,€ R,, (uzl = (uaz-==> z,€ K(S,).

Summarizing all these facts we obtain the desired result.

The partition ¢, ={[al : ac A} represents the
"alphabet" .A in the space AI; it is a generator of the
space in the strict sense. In what follows we shall set,

for « Borel and S,-inveriant,
Hw) = H, (@) = H@(SA' %)

h(@) = hy(@) = h (S, 7).
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If the condition
(3.6) holy)<+oo , i.e. 7, €2 (F,)

is satisfied, then

(3.7 h(@ = [ h(w,) aeulz)
A

as proved by Jacobs and by Parthasarathy independently (for
A finite; the case of A countable is a trivial extension;
cf.[4], Chapter 8). The basic tool for our investigation
will be Theorem 9.3 from [4], proved later by making use of
a more direct method as Theorem II in [5]; we shall restate

it as

Lemma 3.3. If h,(79,)<+ 2@ then

H(w) = ess.uup{h((uz):zeRA mod g .

A correction. Since the proofs of Parthasarathy’s theo-
rems given in [8] are not valid, and since the case 7€
¢ 2w (F,) was treated by the suthor both in [4] and [5]
with their aid, the condition (3.6) must be added to the as-
sumptions of Theorems 8.2, 8.3, 9.1 - 9.4, 10.1, 1l.l,and
11.3 in (4], and to the assumptions of Theorems I and II
(together with Lemma II) in [5].

4. Properties of H(T), Let Z, ={§ e Z: card($)£ aj.
Ir g € Z,, then a sequence U = (U ,neN) of mutually dis-

joint sets belonging to the class (; v 401 will be cal-
led an ordering of the partition S if
-i'un: neNi}{o S -i03, g €Zyg=>MU, = g for n>a (aeN).
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Throughout this paper we shall assume that we have assigned

to every i € Z, an ordering U(§ ) of the partition § -
Let A, ={neNmnca}, For A=Ay, € Z,0rA=N,

§ e 2, let qrs‘: N —> AT ve definea vy

(4.1 (yte); = nier Mo e Uy(f); iel.

Then (qrg“‘)°1 establishes a 1-1 corresponéence betwéen FEEn
nqr;(.n.) and (6¢ g, (vf‘)'ly: = ?g 8o that

(4.2) (“S = @(1}%‘)-]’ on F,

is Borel and S,-inveriant, and

(4.3)  H, (T,§) = H,§ (5, 7)) = H(&f ),

It follows from the construction of (ug that it is valid

Lemma 4.1, If E’ is a generator for T, € € 2, or
g € Z,, then 9’/(4. and IF‘A/(«,g are isomorphic measure
algebras for an isomorphism under which T and SA are conju-

gate, where A = A, and A = N, respectively.

In the remainder of this section it is supposed that
A=N, 1;? ='VgN It m £ g (n,§e2y), let v : N—N
be defined by

Ton) =miff U (€)c Up(n).
Then the tramsformation < = 'c'l'.g »y 1 :NL— NI given by
Tz = (%, 24,ieI), zeNt

is Borel measurable and
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(4.4) (u.’l= (u.g't'l for x = «[§ ,71].

Lemma 4.2, If ge Z then

H,(T,p) = HQ‘ﬁ (s, wc'lff) = ess.sup{ h( w, vz e
€ R mod (a«g}

where S = Sy, = g4, R=Ry, ®=wl§,y1.

Proof. Taking into account that

(4.5) L, (™ nm)

for m = “z» 2€R, and that
n -1l _n
hpzz-4(7 ) = h(u_z(fe ),
-1 _ -1 § ~1 -
“® "= 4, for zeRn~x "(R), @ (Rn2T7(R)) =1,
we obtain the equalities
h( @y v = h(g,,) = ho (5, 7719), zeRn x"L(R).

By making use of the latter equalities and of Lemma 3.3 we

get the desired result.

Lemna 4.3. If §,1¢, ge Ze then H(T, ¢ ) 1
TH(T, § ).

Proof, The monotonicity of the convergence is guaran-
teed by (2.1). From Lemma 4.2 we obtain that
sup H(T ) = ess.sup { sup h( *1)izer mod i}
foy. »§n . ™ z2°%n /¢ (1t

for x, =xl¢ ,?nl « By (4.4) (cf. the proof of Lemma
4.2)

-1, _ -1, -
sup h(w, z,7) sup h‘uz(S,'z:'u ) h‘wz(s,y’),
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the latter equality beimg a consequence of the relation
re Zé‘j (Fy). Since h&z(s,fr) = h(u,) by definition,
the assertion of the lemma follows from (4.3) and Lemm 3.3.

i i . .
Proposition 3. H(T) =€a¢u%‘“ H(T, §)
The assertion is an immediate consequence of Lemms 4,3,
Proposition 4. l-lt“b (T)z h(w(T); if T is ergodic then
H(“'(T) = h(“(T).

The assertion follows from (4.3), (3.7),and Lemma 3.3

immediately, because then it is guaranteed that
H,(T,§ )ZhM(T,g ) for §e 2o -

Proposition 5. If § 1is a generator for T then
H(T,g) = H(T) if ?e Zo -
Proof. We are to show that 7 < ¢ , =7 ¢ Z, (it
suffices 7 € 2)=)H(T,7n)<H(T,§ ), and after to apply
Proposition 3 to get the equality asserted. Let = € Zew
then gv 7 € Zo o Writing m for ‘u,f"" and © for
vg[? v n, g] , Wwe obtain from Lemma 4.2 that
- -1 = -1 s
H(T,§¢ ) = Hy(S,® ") = ess,sup {h‘“z(s,fz Tz e
€Rmod m ¥ .
From the implications
E is a generator for T = ’u-l ¥ is a generator for
(S,m)=ym{z€R: '1:'17 is a generator for (S,(u—z)} =
=1

we conclude that
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-1 _
h‘wz(s,'c ) =h<“z(S) -hc‘.(s,y), zeR mod m,
which leads to the equality H(T, § ) = H(T, §€vm ), QE.D,

5. Preparatory lemmas. By P we shall denote the space
of probability vectors p = (pn,ns N); i.e. P,z 0, ‘%‘ ) L
=1, For pe P, h(p) is the entropy of p. We shall set

P, =4{peP:h(p)< + w}.
For pe P, let Np =4{neN:p,>0%. Setting, for acN,

)

P, =4pe P:card N,) =a}, P, =P Iy Par

0 "a

we shall define t = tp:A —> Np (as to the notation Aa cf.

a
Sec. 4) for peP, and t = ty:N— N, for peP; by the re-

quirement that

P(n)Z Pt(n+1)? Pi(n) = Pr(n+1) = t@I<tln + 1),

In the remainder of this paper we shall assume that
logarithms are taken to base 2: log = log,e Let {u} be
the integer associated with a real number u by the condi-
tion that u - 1<§{ u}{ £ u, Define

bp(n) ={~- log pt(n)} , t = tp,
neA, for peP,, and neN for P, respectively. Setting
rp(l) =1,

rp(n) = min{n>rp(n = 1): by(n)> by(ry(n - 1033,

n>1, in case pe P(;, and similarly in case pe P, (with the

restriction that both rp(n - 1) and n<a), we easily find
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that

rp(n +1) - rp(n)< exp, L2bp(rp(n))] -

because tp orders Np monotonically (compare with the con-

struction given by Krieger in [9]).

Given a triple (k,,(3) of positive integers such that
<}, B-x< Zk, let 8k o, be a 1-1 mapping of {neN:
tot & n<(3§ into €1, 2} . Let us assign to psP the mapping
gp-A — A for pe Py, and gp.l—r Ao for pePo given by

gp(n) = 8 w,p (n) for rp(s)é n<rp(a +1),
o = rp(s), R= rp(s +1), k = pr(rp(s)), where
o0
=h\3J1 {1,23’kc
Setting
(5.1)  gp(n) = (x1,.0,%,3) for gy(n) e {1,2} k

(Xgyeee,%) = gp(n), we have a map gg into
& 3
(5.2) Ay = V£ (xy5000y3;,3): (9500003 ) € {1,28 “§ .

Given we N, let

(5.3) B, = hQI U -{ xeA ix = (x5,ieI),
=+ s

...xidi), »‘1,:2/‘9.’ (di = ')50}0

xi = (xil,.n.

Put S; = Sy , A = £1,2,33 Y, It was shown in [ 91 that the

following assertion holds.

Lemma 5.1. There is a 1-1 Borel measurable mapping
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A I =
fy:B,—> A" such that £,(8,%) S,f,(x),xe B .

For any A at most countable, let ®, be the Rohlin

measurable partition of the space AI defined by

Pp = {R::ze RA} v { (RA)CG (cf. (3.5)),

end let, for w Borel and S,-invariant, (Fy,m) be the com-
pletion of (F,,w). By (QA,.’BA,m‘;) we shall denote the fac-
tor space of (AI,Fm,m) with respect to ©)) 8and by T A
the corresponding homomorphism (cf. [11, Chapter IV), Let
(J,&£,A) be the unit interval with Lebesgue measure. It
follows from Lemma 3.2 and from Rohlin’s theorem given in

(2], § 4, par. 3 that

Lemma 5.2, If ¢ is non-atomic then there is a mod 0

isomorphism between (AI,Pm,m) and

@, n4,00 % (0,5, 2).

In the following lemma we have set (Fy,m) for the com-
pletion of a Borel measure in N® and (Q,R ,mo) for the fac-
tor space of gb =Py (the factor space of the homomorph-
ism T = T‘N); A being an arbitrary finite set, Al endowea
by a comple ted measure (Fﬁ,ﬁ) which is S,-invariant, we wri-
te (Q,% »@,) for the factor space with respect to @, cor-
responding to homomorphism T o Setting S = SN everywhere
in the sequel, we shall assume that m is S-invariant. The
canonical system of measures with respect to @ and that

with respect to @, are denoted

(my,X€Q) and (my,Ye .
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From (3.3) it follows (cf. [51, Chapter 2) that
(5.4) my = @, on FgnX, z€eX, XeQ = @ ,
my = w,, on FnY, z°c ¥, YeQ =@ = @y

Lemma 5.,3. If H!:Qo—*a(QoeR,mo(Qo)=l) is in-

jective and such that, for any E’se F, and u real,
Y'l {Tz": “ g (E)<uledB,

then ¥ is (B,% )-measurable, and if o, = m, Y_l, Y is a

mod O isomorphism between the factor space of @ and that
of @5 o
Proof. Making use of the properties of the canonical

measures my and of (5.4), we obtain that, for M'e B , z°¢
€Y, YeQ,

N_l P -

my (T "M Y) = 3y, (Y) mod T,

where gy, means the characteristic function of M’, and

X-1, - =1,

Uy (T N7 = m!(T‘ M'nY)

supposed that T ~IM‘e F,. Hence the class of sets of the

form

{Tz2": @, (E)<u} |, E'e V,, u rational

~
generates J3 mod 'ﬁl’o. From here the assertion of the lemma

follows.

6. Theorems. The preceding lemmas will be used toge-

ther with the notations given in Sec. 5 to proving

Theorem 1., If « is a non-atomic Borel measure in NI
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which is invariant with respect to the shift S and such

that

h(w(r)<¢ o , H(w(s)<+ o ,
then there is a finite set A and a Borel measure (w' in
Al which is SA-invariant, together with a mod O isomorph-

ism between (AI,FA, @’) and (NI,FN,(w) under which the

shifts SA and S are isomorphic.

Proof. Applying Proposition 5, we get H‘«,(S) =
= H&(S,'y) = H(uw)<+ 00 . Let

Ry = {zeRh(@w,)£H((w), @, non-atomic 3.
From lemmas 3.2 and 3.3 it follows that (u.(RM) = 1. Since
RPe ?"1(530), there is a strict correspondence between

Q, = T'(R,) and Ry = T 7l 6o that Qe B, mo(Qp) = 1.
Choose J°> 0 and weN such that

w>2(H(w) +d) + 2.
Assign to every XeQ  the least integer q = q(X)e N for
which

%‘-hmx( ) <H() + I

this is possible by (5.4) and (4.5), Since my is X-measur-
able, the set

M, = {XeQ,:q(X) = qt e B,

i.e. it is X-measurable.

Given qeN, Xel(q, we have

Py = (mx(‘u.n(»(q)), neN)eP ;
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U (¢2) is the ordering associated to 7% by the conven-
tion given in Sec. 4. Let in be the element in N for which
Up(yd) =LE,1 . Define gH:Nl—s A  (cf. (5.1),(5.2)) by

0(= o
gx(zn) = gpx(n), ne pr,

and gx:NI-—r (AO)I as the sequential coding
o I
(gx(z))i = gx(zi,zi+1,...,zi+q_l), ze N ’ ie I.

It follows from our constructions given in the preceding

section that gy(z) is (X,z)-measurable, and that
So(gy(z)) = gx(Sz);
gx is defined mod my. Set
£2(z) = £, (g,(2)) on gg (B,);

cf. (5.3). Since my is ergodic,

. 1 m-1 gz‘l ( ) 2
Hn 55 2 2o Opy P Bigegre et Biqrgri-1)) £

£ %— hmx(fq), zZ€ N a.8, (mx),

where ¢ :Z,—s> n (compare with [ 91, proof p. 457) so that
mx(g;(l(B')) = 1; consequently, f§ is defined on Nt mod my
and, by definition, fg(z) is (X,z)-measurable. It follows
from Lemma 5.1 that f; is a 1-1 Borel measurable mapping of
g5 (B,) into AT, A =41,2,3% " which commtes with the
shifts S and S, (it is, of course, bimeasurable because Al
and NI are Polish); notice that fg(g}l(B')) is the Borel set

f(B,), which we shall denote by B.
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Let ¥:Q — Q be given by
¥X={2'e Ry: w,, = @, (6P, xeq, zex,
and set (cf. (5.4))

@) = [ m(EPTHEDA D) am,(X),E% 7,
the sense of the definition is gueranteed by the (X,z)-
measurability of f;(z); q.o' is an SA—invariant Borel mea-
sure in AT and its completion will be denoted by (Fg,).
Since the assumptions of Lemma 5.3 are satisfied for Yy
defined above because of the (X,z)-meaaurability of 1’;,
then, setting ﬁ'o = moY-l, we find that ¥ is a mod O iso-
morphism between the spaces ® and (;6' =@, (more precise-
ly, ¥ is first shown to be Borel measurable, and then &,
is the completion of the measure constructed with the aid
of ¥ and the restriction of m, to Borel sets lying in B,
i.e. sets M for which T ~lye Fy)e.

Let By = (f;)-l(Bon ¥X), and let £y be the restric-
tion of r; to Bx It is easy to show that

BET) = L omp(B'nY) @ (1),E% ¥, .

Applying Lemma 5.2 both to @ and «’ , we conclude that
there are mod 0 isomorphisms ? » @ making AI isomorphic
to a’xJ and NI to QxJ, We shall set mod O

¥y = (¥, F (), YeT, yeu,
W =9 5@, ), x =¥
where <oy, 6! are sections of <, & ; ?x(y) is (Y,y)-
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measurable because of the measurability of fy(z) and of the
sections so that ¥ is a mod O isomorphism between

(Q, 3,8,) % (3,52,4) and (@, ,m) = (J,5,A);
hence y = ¢ <y-1 is a mod O isomorphism between
(LB, ) ana (NL,E_,m) which commites with the shifts S,
and S as follows from its construction; its restriction to
a Borel subset of B, of (a«'-measure one on which it is de-
fined yields the desired mod O isomorphism between

(AI,FA, «') and (NI,FN, R

Theorem 2. If (Q,7,w) is countally generated and
such that the number of atoms is essentially bounded with
respect to an automorphism T and the asymptotic rate of T
is finite, i.e. H(T)<+ 00 , then if ¥ is the non-atomic
part of measure w such that (T,» ) is aperiodic, there is

a finite generator for the transformation T of (3",‘u,).

Proof. Since (T,» ) is aperiodic, it has a generator
§ o€ 2, (cf., e.g., [ 6], Sec. 2); then, according to Lem-
ma 4.1, % /» and rN/v€° where

vfo )-1

= v(ngn
(-]
are isomorphic, with the isomorphism making T and S (S =
= SN) conjugate. By making use of Proposition 1, we conc-
lude that H,, (T) = H-ufo (S); the latter number in general
differs from H»O(S,‘r), TN Vo = p;O « An appli-
cation of Proposition 2 together with Proposition 4 yields

the relations
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+ 00 > Hg(T) = H,(T) = B"o(S)Zh”o(S)’

which makes possible to apply Rohlin’s theorem (cf. £101,

§ 10) to the aperiodic (S, »,), and to assert that (S, »,)
has a generator § e Z»O(PN), i.e., with finite entropy
(to be precise, D, is first completed and the found gene-
rator replaced by a Borel one). Applying Lemma 4.1, we con-
clude that Fy/ v and Fn/v§ are isomorphic, where

»§ = vo(vgu)‘l, zy?”:NI—-> Nt

constructed on the basis given by the system (NI,FA, Y51S),
for an isomorphism under which (S, »,) and (S, »§ ) are con-

Jugate. Similarly as above we conclude that

m«nﬁ (S) =H o (S)<+ 0.

Since € e zvo(FN) is equivalent to € ng (Fy), we
may apply Theorem 1 (cf. Lemma 3.1: »$ is non-atomic) to
the system (NI,F,, »% ,5). Iet », = »¥ | and let y be
an isomorphism between (S, »;)} and (S,, »‘) for some A fi-

nite, »’ Borel on AI.

Now we take into account that the number of atoms is
essentially bounded with respect to T. It follows from
(1.3) that there is & mtural number de N such that

card (Aq)édq

Setting a = max (d,card (A)), we immediately find that the-
re is a measure algebra isomorphism between SA/ »/ and

Sy, /»" for some SA' -invariant measure on PA' " A = Aa =
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={neN:n<aj. Since F,,/v” is isomorphic to 5/ by
construction, with conjugacy between Sy, and T, and since,
by Lemma 3.1,

»"(K(S,,)) = 0 and, moreover, card (Kq(SA, N= al

for q¢ N, there is an injective map of Aq into Kq(S Vs
say ¥aqr with the property that

Yq('l‘D) =Sy, qrq(D), De Aq;

it is because d<a, Hence we conclude that there is a mea-
sure (u,' on F,, , Borel and S,/ ~inveriant, with v as its
non-atomic part, and an isomurphism between FA’ /<w' and

F/m under which S,s and T are conjugate. The desired
generator corresponds to rxymod O if use is made of the

measure algebra isomorphism.

Proof of the Theorem. The sufficiency was establish-

ed in Theorem. Conversely, if g is a finite generator for
T, there is a finite set A, an S,-invariant Borel measure
(u,' in AI, and a measure algebra isomorphism between
FA/(w' and ¥/ so that S, and T are conjugate with
respect to it. Making use of this isomorphism we conclude
that card (Aq)l_-(card(A))q, and that (T,» ), v the non-

atomic part, is aperiodic. Q.E.D.
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