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THE NON-AXIOMATIZABILITY OF THE OBSERVATIONAL PREDICATE
CAICULUS (GENERALIZED TRACHTENBROT °S THEOREMS)
Ji¥{ IVANEK, Preha

Abstract: The observational predicate calculus (OPC) dif-
ers from the classical predicate calculus by restricting
of the semantics only to finite structures. The following
theorem is proved: Any OPC with at least one at least bi-
nary predicate is non-axiomatizable. The result is streng-

thened in various ways.
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Introduction. By the observational predicate calculus
(OPC) we mean the predicate calculus with the usual syntax
(prodicates, function symbols, connectives, classical quan-
tifiers; no equality predicate) but with the semantics mo-
dified by allowing only finite models.

B.A, Trachtenbrot constructed in [7],[8] a particular
OPC with a finite number of predicates which is not (recur-
sively) axiomatizable and the set of all non-tautologies of
which (i.e. sentences negation of which has a finite model)
is not separable from the set of all classical tautologies.

We generalize these results as follows:

Iet L be a language containing at least one at least

binary predicate. Then
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(1) The set Taut(OPC) of all observational tautolo-
gies in L (i.,e. the set of all sentences in L valid in all
finite structures for L) is not recursively enumerable,

(2) If Teut(CPC) is the set of all classical tautolo-
gies in L (i.e. the set of all sentences in L valid in all
structures for L) then Taut(CPC) and the complement of
Taut (OPC) are effectively recursively inseparable.

(3) There is a primitive recursive function f associ-
ating with each (index of) a recursively enumerable theory
T sound for OPC an observational tautolegy f(T), which is
a Y3V3 -formula and is not provable from T,

We use a method of proof (suggested by P, Hijek) based
on the MatimseviZ’s theorem ([3],[41) about diophantine ex-

pression of recursively enumerable sets.

§ 1. The theory of natural sets. The theory of natural

sets (TNS) has a single binary predicate letter € and no
function letters and individual constants.
l.1. Definition.
X=Y ooo (Yu)(uexesuey) (equality)
XE8Y oco (Vu)(ue x—» ue y) (inclusion)
0(x) ese (Yu) quex (empty set)
S(x,¥,2) eeo (Yu)(ue s e (uexvu=y)) (generalized
successor)
The theory of natural sets has the following two axioms:
Axiom of Extensionality.
(Vx,y,2) (x2y —» (xe2 e yez)).
Axiom of Strong Comple‘esness .,
(3w)o(u) & (V x,y,v)((xSv & yev)— (3z)S(x,y,z)).

~
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1.2, Lemma. For any n
™NS = (yhex&...& wex)— (Iy)(Yu)(uey >
<« (usulv...vuaun)).
1.3. Remark. In the observational predicate calculus
the Axiom of Strong Completeness is (semantically) equiva-
lent to the axiom

(Vy,z)(ye z — (3x)(7ye x & S(x,y,2))).

l.4. Auxiliary definition. Let R be a binary relation

on a class M, a,be M. We denote

Extp(a) =fceM; c Ra? (R-extension)

8 =pb Cm=d Extp(a) = Extp(b)  (R-equality)
8 Spbe=> ktR(a)sExtR(b) (R-inclusion)

A subclass M’ of a class M is called R-comple te if
deM’ implies Extp(d)s M’ .

1.5. Convention. By the symbol M we shall always de-

note & binary relational structure {M,e>,

Investigating models of TNS we shall restrict ousel-
ves (by the Axiom of Extensionality) only to structures M
with the property: a Sebe=> a = b for all a,beM,

1.6. Example. Let s, =40%, 8i+1 =83 Ufavfni;
a,bes, 3,
HF = '4\?0 8; (the class of all hereditarily finite sets),
HE = {HF, e > is a medel of INS; in addition, for any i
8 = <'1’ €? is a finite model of T8S,

1.7. Definition. A patural set is a finite model ¥ of

TNS such that the relation e is well-founded on the set M,
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1.8. Example. For any i, 8; is a matural set.

1.9. lemma. For any natural set M there exists a uni-
que hereditarily finite € -complete & -complete set ¥ such
that <M, e) is isomorphic with M.

Proof. By the Isomorphism Theorem (Theorem 15B in [2]).

1.10. Definition. (Natural numbers.)
F(x)eoo Q(X)v((Fw)(uex £0(w)) & (VV)(vex —
—(3w)(S(v,e,w) & vEw & (wexvw=x)))) (x is zero or
X contains zero and for ary element v of x the successor w
of v exists and either w is an element of x or w equals to
x)
n(x)... N(x) & (3 “l"“’“n)(%i‘a'- ui.’fuj & (Yu)(ue x «>
> (usuv... vu=uy))). (x is the standard natural num-
ber n)
1.11. lLemma. For any mynz1l
(1) = n(x) «— (3 xo,...,xn_l)(g(xo) & oo
ees & m=1(xp &(Vu)(uex ¢ (U= X Voo VU Xp1)))s
(ii) = (n(x) & m(y))—>x=y,
= (m(x) & m + n(y))— xey.

Proof. Let Mt= nlal for some M, ae M. Using the de-
finition of the predicate N and the trivial assertion
= (i(v) & S(v,v,q) & v¥w)— i + 1(w) (for all i)
we successively construct an e-chain a,y8y900e € M such that
M ila;] as long as possible. But, a contains exactly n
e-different e-elements, hence this construction must be fi-

nished on the n-th step: aj e &,..., a,_, € &, a, =.a. This

(o] n e

implies (i). One can prove (ii) from (i) by induction.

1.12. Lemma. Let M= N[al, If for alln MEEn lal,
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then there is an e-chain 85187yey8 ,00. such that for
each n we have a_ e a and M F=nla)l.

Proof. It is enough to repeat the construction of the
proof of the Iemma 1.11, in this case this construction can-
not be finished after a finite number of steps,

1.13. Lemma. Let M = (M,e? , and let M’ be an e-com-
plete part of M, M" = { M",e MM’} . If for some p

M= (3 x)p(x)
then for each m4 p

aeM, M =m [al¢=> a€M’ , M= m[a].

Proof. The implication "<¢== " is obvious.
"= " Let Mk=mnlal. There is a beM’ such that
M= plbl, hence (by "= ") M = p [bl. By Lemma 1.11
(ii) we have a e b or a =eb. Since M is e-comple te, we ha-
ve a€M’ and a g _b. Finally, by Lemma 1.11 (ii) we obtain
M= mnlal.

1.14. Definition.
P(x,5) «e. (Yu)(uey «> uSx) (power)
Z(X)eas (Byl,...,ys)(P(x,yl) & P(yy,5,) & ... &P(ys,ys))
(arithmetical securedness)

1.15. lemma. For any n=1
INS = (2(x) & yEx & (Jugyee,u ) (Vu)(ueyes (us u v
Veeovus=u )))—Z(y).

Proof. It suffices to use repeatedly Lemma 1.2,

1.16. Definition. A natural set M’ = ¢ M',e’> is said
to be a securing set for a natural number P in a structure
M= (Me) if

(1) M° is a substructure of M (i.e. e’ = e M1’ )y
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(2) M’ is an e-complete part of M,
(3) W= (3 x)(p(x) & 2Z(x)).

1.17. Example. Denote exp(n) = Zn, expi+1(n) =
= exp (expi(n)). Then -!oxps(p) is a securing set for p imn
HF.

1.18, Theorem. Let M be a model of the theory of natu-
ral sets and let M= Nla) & 2 [al.

(i) If M= plal for some p, then there exists a na-
tural set M° which is a securing set for p in M.

(ii) If ME~ p [al for all p, then for each p there
exists a natural set !p which is a securing set for p in M.

Proof. (i) By the definition of the predicate Z there
are gj,e..,qg¢€ M such that

K= Pla,q;] & P[q;,9,7& ... &P [a5:961 «
Since by Lemma 1.11 Ext,(a) is e-complete, it follows that
&S, q, and Ext,(q,) is e-complete,..., Ext (qq) is e-comple-
te, Let M° = Extse(qs), M = (M, ePU’Y .,

M’ is a finite model of TNS, because M’ is a finite e-
comple te and & ,-complete part of a model of TNS, If bl,
by,... is & descending e-chain in M’, then clearly bgsbgyeee
.- €Ext_(a); therefore, by Lemma 1,11 there is a k€p + 8
such that M= 0 (b 1. Hence every descending e-chain in M’
is finite. Thus the relation e is well-founded on M°,

Finally ome can verify
M= plal% z[a],
since M" is e-complete and @,q;,...,q5€ M’ .

(ii) This is a consequence of Lemma 1.12, Lemma 1.15
and part (i) of the present theorenm.
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§ 2. Polynomial formulas. We show how to express po-

lynomials by means of some particular formulas using the
notion of securing sets.
2.1, Definition.

U(x,y,2) o (Yu)(uez <> (uexvuegy)) (z is the union of

x and y)

D(x,y,2).. (3 v,zl,zz,z3)(g(v) & S(v,x,2;) & S(zy,y,2,) &
&S(v,zl,z3) & S(z3,zz,z)) (z is the ordered pair of x and

y)

K(x,y,2) .. (Vu)(uez <> (3v,w) (vex& wey & D(v,w,u)))

(z is the cartesian product of x and y)

F(x,y,f) .. (3 2)(K(x,y,2) K £S2z & (VY V)(ve x —>
—(Aw,u)(wey & uef & D(v,w,u))) & (VYw)(wey —>
—(3v,u)(vex &uef & D(v,w,u))) & (Vv,v',w,w ,u,u’)

((uef & u’e £ & D(v,w,u) & D(v',w’,u’)) —>
—((v=v'vw=w')—>u=u’)) (f is a bijection between x

and y)

T (x,y,2) .o N(x) & N(y) & N(2) & (3u,v,w,x",y",2°,£)

(0(u) & S(u,u,v) & S(u,v,w) & K(v,x,x")&K(w,y,y") &
&U(x",y",2°) & F(z",z,f)) (addition; z is equinumerous with

the union of disjoint copies of x and y)
£(x,y,2) 4. N(x) & N(y) & N(z) & (327,£)(K(x,y,z°) &
&F(z’,z,f)) (multiplication; z is equinumerous with the car-

tesian product of x and y).

2,2, Example. For any natural numbers m,,m,,n
HF = ¢ [ml,mz,ni'k:) m o +m,=m
HF = = lmy,my,mle= my, = m
The following lemma explains the role of securing sets
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in our construction of arithmetic.
2.3. Lemma, Let a natural set M" be a securing set for
P in M. If for some a),a,,a€M, my,N,,m<p we have
¥re=m la)) & myle,]&m[a) then a,,8,,8€ U’ and
(1) M= ¥ [a),0,0)¢= M= 2 (ag,0e]lE=n; +m, =
= m,
(ii) M-~ 8y,85,8 J¢==> M= = [ 8),85,& > m, =, = m,
Proof. We prove (ii); one can prove (i) analogously.
First, by Lemma 1.13 we have 8;,8,,a€M’ and
M= myla)l & my[a,1 % m[al. Now, we prove the first
equivalence of (ii). Since M is a securing set for p in M,
there are b,q75¢+3q5€ M* such that
M= pILbl & P[b,qy]1 & P (93,921 & «.. & Plaqg,q4] .
If M= *[a),a,al, then for some a’,f,geM
M= KCaj,a,,8°]1 & Fla',a,f]1& K [a’,a,g] .
Since, a8 s, b, a, S, b, we have a'ge 9, (and ac, bse qz);
thus fc, q, and g g, Q4 If follows a’,f,geM’ and
M= Kls),8,,8"1& Fla',a,1 % K[a’,a,g]
since M’ is Egq-complete and the quantifiers in the defini-
tions of the predicates K, F are bounded. Similarly the con-
verse implication holds.
By Lemma 1.9 there exists a uniquely determined heredi-
tarily finite & -complete < -complete set M such that
(¥, e) is isomorphic with M° (by means of some mapping f).
It is easy to verify the following by induction:
M= ilele= f(c) = ie W (for any ce ¥, i=0,1,...).
Hence M |= = [ 8),8,,a ] &= il' = (m,n,,nl],

Finally, :l:l_' is a securing set for p in HF, hence by the first
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equivalence of the assertion (ii) (which has been proved)
and Example 2.2
M= - [o),my,mlé= HF = = [my,my,m J¢=> 0y m, = m,
2.4, Definition. We define (by induction) polynomial
formulag with j + 2 free variables anl their values - func-
tions of j + 1 arguments on natural numbers:
(1) The following formulas
g(xo,...,xj,x)...N(xo) & oeee & N(xj) & N(x) & O(x),
;(xo,...,xj,x)...N(xo) & oo & N(xj) & N(x) & 1(x),
;i(xo,...,xj,x)...N(xo) & oo & N(xj)& N(x) & x=x;
are initial polynomial formulas with values
O(mo,...,nj) = 0, 1(m°,...,mj) =1, Ii(mo""’mj) = my
(i =0,1,...,J) respectively.
(2) ILet a,® Dbe polynomial formulas with values P, Q,
respectively. Then the following formulas
TOQ@ (xo,...,xj,x)..(i ¥:2)((yexvy=x) & (zexvz=x) &
& f(y,z,x) & ar (xo,...,xj,y) & e (x,,...,xj,z)

L GON (xo,...,xj.x)..(ﬂ ¥,2){(yexvy=x) & (zexvz=x)&
& = (y,z,x) & o (xo,...,xj,y) & @ (xo,...,xa-,z)

are polynomial formulas with values

P® Q(no,...,nj) = P(mo""’"‘,j) + Q(no,...,mj),

PO Q(mo,...,lj) = P(no,...,lj) . Q(‘o"”"j)’

respectively.

(3) Each polynomial formula caen be obtained from the
initial polynomial formulas (1) by finite number of uses the
rile (2),

2.5, Lemma. (i) If o is a polynomial formula with

J + 2 free variables, then its value is a polynomial of j + 1
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ar gaments on natural numbers,

(ii) For any polynomial P of j + 1 ar giments on natu-
ral numbers there exist (many) polynomial formulas with j + 2
free variables such that their values are P,

Proof. Polynomials of j + 1 arguments on natural num-
bers are exactly those functions which can be obtained from
the functions 0,1,10,...,Ij (see 2.4 (1)) by finite number of
additions @ and multiplications @ (see 2.4 (2)).

2.6. Example. If a polynomial formula ¢ has a polyno-
mial P as its value, then for all natural numbers no,...,mj,n
we have

HF t—= o L[ mo,...,mj,ml<=> P(mo,m..,mj) = m,

2.7. Theorem. Let a natural set M be a securing set

for p in M. If for some 8 sece 8 ,8€ M, Moyeee,l

j m<p we ha-

.j’
ve
Me=mn,lad & ...% m; EaJ-J & mla)
then ao,...,aj,ae M’ and for each polynomial formula Ir with
a value P
M=ot Boreees85,8 )= M= [ 8greeer8yra Je=
= P(mo,...,mj) = m,

Proof. For the initial polynomial formulas the theorem
trivially holds. By Lemma 2.3 the rule (2) of Definition 2.4
does not lead out of the class of polynomial formulas satis-

fying the theorem.

§ 3. Generalized Trachtenbrot’s theorems.

3.1, lemma (Matiasevi¥ [31,(4)). If a set R of natural

numbers is recursively enumerable, then there exist j and po-
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lynomials P, Q of j + 1 arguments on natural numbers (with
natural coefficients) such that k € R¢—> P(k,ml,...,mj) =
= Q(k,ml,...,mj) for some m)yeee,my.

3.2. Notation. For any finite language L of the predi-
cate calculus we denote
Seni:L +++ the set of all sentences (i.e. closed formulas) in
L
TautL(CPC) ees the set of all classical tautologies in L
TautL(OPC) +++ the set of all observational tautologies in L
(i.e. all sentences which are true in every finite structure
for the language L)

3.3. Theorem, If ary finite language L of predicate
calculus contains at least one at least binary predicate, then
Sent; - Taut; (OPC) and Taut, (CPC)
are effectively inseparatle recursively emmerable sets.

Proof. Let A, B be some effectively inseparable recursi-
vely enumerable sets of natural numbers (see Rogers [5], Th.
XII, § 7.8), let a partial recursive function g realize their
effective inseparability.

Assume we have a recursive sequence -[gok; k =0,1,...¢
of sentences of the language L such that

(a) keA = g, € Sent; - Teut, (OPC),

(b) keB — &y € Taut; (CPC),

Denote by Wi recursively enumeratle set with the index
t, by h a primitive recursive function such that h(t) is an
index of the recursively enumerable set { kjy ppeW, 3, i.e.
Yoty = {k; YreEW 3.

If for ary disjoint sets wu,wv

- 5] =



Sent - Taut (OPC)E W, Teut(CPC)eW,,
then by (a),(b) we have
A2 Wy (u)r BEWn(v)i
therefore g(h(u),h(v)) €V (W)Y Y(v) which implies
Fgn(w),h(v))E Ta¥ ¥y
Hence, Sent; - Teut; (OPC) and Taut;(CPC) are effectively in-
separable sets by means of the partial recursive function
£@,7) = Pg(n(u),n(v))’
Now, we use Matiasevig ‘s theorem, the theory of natural
sets and polynomial formulas to construct formulas ¢, with
the desired properties (a),(b).
By Lemma 3,1 there are polynomials PA’ QA of i + 1 argu-
ments and PB, QB of j + 1 arguments on natural numbers (with
natural coefficients) such that
ke A= PA(k’ml"”'mi) = QA(k’ml""’mi) for some my,...,m;
ke B> PB(k'nl""'nj) o Qa(k,nl,...,nj) for some Nj,e..,ny
Ghoose (by Lemm 2.5) polynomial formulas IT,, @,, 7p,
®g with values PA'QA’PB’QB'» respectively, and denote
e (3 Xyeees Xy X (Z0xy) & oo & Z(x;) & Z(x) & k(x,) &
& (X yeee,Xs,X) & @) (X, 00e,Xy,X))

B ee- (3y°,...,yj,y)(z(y°) & oo0 & Z(yy) & Z(y) & k(y ) &
&gy yee- ,yj,y) & @ E,(yo,...,yj,y))

Pyeee TNS —> (ot —> 3,).

Since the language L contains at least one at least bina-
ry predicate, we can assume that ¢ € Sent;. We wish to show
(a),(b).

(a) If keA, then there exist my,...,m;,m such that
Pp(k,myyeee,ms) = m = Q(kymyyeee,my)e.
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By Example 1.17 there is a natural set s which is a se-
curing set for m° = max (k,ml,...,mi,m) in HF. By Theorem
2.7
8 = :YrA[k,ml,...,mi,mJ & QA[k,ml,...,mi,mJ
hence s == TNS & Cpe
Assume 8 = Bxs i.e. for some bo,...,bJ-,bcs we have
s = ZLboJ L S Z[bJ-J & z[bl & g[bol &

& :ITB[bo,...,bJ-,b l& ep [bo,...,bj,bJ .
Since s is finite, there exist nl,...,nj,n such that
Hence, by Theorem 2.7,
PB(k’nl”"'n,j) =n= QB(k,nl,...,nJ.)
which contradicts k¢ B.

(b) If ke&B, then there exist Nyyeeeyn.yn such that

PB(k'nl""’n.j) =n = QB(k’nl'“"n.j)' ’
Let M be a model of TNS and ¢« Then for some Bhyeee,8y,
aegM
M=2Zle,l & ...&Z[ai.'l % Z2Lal & kla )l &

&, [ao,...,ai,a ] & ©a [ao,...,ai,a ].
Assume M Foyjla)l & .., & m; a;] & mClal
for some natural numbers Myyeee,m;,m,
Hence, by Theorem 1.18 (i), there exists a natural set )
which is a securing set for m’ = max (k,my,¢.0,m;,m) in M,
therefore, by Theorem 2.7,
PA(k'ml""’mi) =m= QA(k’ml""'mi)
which contradicts kéaA,
Thus, there is an a’e {al,...,ai,a} such that

Mi=Nla’lg& z2[a’] and M £ pla’) for all p.
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Hence, by Theorem 1.18 (ii), there exists a natural set

M
=P

ani, by Lemma 1.12, there are bo”"’b

which is a securing set for p = max (k,nl,...,n-,n) in M

J -
J-,bcy; such that
M=k [b 1& n,Lb ] & ...&g_lj[bj_'l& nlbl.
Therefore, by Theorem 2.7

M= T albgyeeeybyyb] & @ Lby,eee,bsb ],

i.e. M is a model of f3,.

3.4. Corollary. The observational predicate calculus
with at least one at least binary predicate is not axiomatiz-
able (i.e. the set of all its tautologies is not recursively
enumerable). Consequently, the calculus in question is not
decidable.

Now we shall consider comple xity of formulas defined by
means of the mumber of alternating blocks of quantifiers.

3.5. Notation. Let Fml; be a class of all formulas of
a language L. For any F,C,DEFml; we denote
EqF = { ¥ € FmL;; there is ¢ e F such that yr<> g is a
classical tautology? ,

VC=Eq4(Vxyyee0y%) 3 5 7€ C,i=1,2,... [
1C=Eq4{1y ; € C?, 4
C—>D=E {y—> ; € C,5« D7,
and analogously 3 C, C& D, CvD, C<«— D,

3.6, Definition. We construct (by induction) classes
ALE (n=0,1,...):

A, =E =B =Eq {3 € Fml;; (B is an ope: formula § ,
A, =VE, B, =34, (notice Fmly = Lo AV E)D) .
We also use the following notation:

AEA,..B for the class AEA,,.-formula for its elements
m="Aome» Ans S Womes ' ’
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and analogously for En'

3.7. Lemma. (1) TNS is an AEA-formula.
(2) 2Z(x) is an EAE-formula.

(3) N(x, n(x) (n = 0,1,...) are AEA-formulas.

(4) * (x,y,2), =~(x,y,2) are EAEA-formulas,

(5) Polynomial formulas are EAEA-formulas.

Proof. Proofs of all points are routine by using usual :
prenex operatiors ; for example we prove (3):

The most comple x subformula of N(x)

(Yv)(vex—> (3 w)(S(v,v,w) & v¥w & (Wexvw=x)))
is an element of the class of formulas
V(B—> (3 (AB & (1AB) & (BvAB)))) = V(B—> EAB) = AEAB,
The predicate n(x) is equivalent with the formula
N(x) & (3 ul""’“n)(-i,é‘a'. ui'_“_ uj Eujex .o Tuex &
&(Vu)luex—> (u=uyv.covu=u)))
which is an clement of the class of formulas
AEAB £ (3 (EB& B & (VY (B—>AB)))) = AEAB & (3 (EB & AB)) =
= AEAB & EAB = AEAB.

3.8, Theorem. If a finite language L contains at least
one at least binary predicate, then there exists a primitive
recursive function f; such that, for any index t of any recur-
sively enumerable theory T in the observational predicate cal-
culus with the language L such that TsTautLOPC), fL(t) is an
AEAE-formula and f(t)e Teut;(OPC) - T.

Proof. Assume we have a recursive sequence 4 Yyi k=
= 0,1,... 3 of sentences of the language L such that
keW <= y eSent; - Taut;(OPC)

for every recursive enumeratle set W, with an index k. There
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is a primitive recursive function h such that
V)= Lk ype ¥, % for all t = 0,1,... .
Hence
¥h(t) € Y= h(t)e Wy => y, ;)€ Sent; _ Taut_ (OPC)

therefore, if W, < Taut;(OPC) then ¥h(t) € Tt (OPC) - W,
Now we construct formulas Yy Since K = { k; kew, 3
is a recursively enumeratle set of natural numbers, there
are (by Theorem 3.1), polynomials P, Qof i + 1 arguments
such that
ke K<=> P(kx,m ryeee,my) = Q(k,my,¢00.,m;) for some Byyeee,m,.
Choose (by Lemma 2.5) polynomial formulas T, ® with va-
lues P, Q,respectively, and denote
®... (3 xo,...,xi,x)(z(xo)& oo & 2(x3) & 2(x) &l_:(xo)&
& ot (xgpeeeyx;,x) & @ (Xgyeee,X;,x),
Viyeee INS —> %€
It is easy to prove, similarly as in the proof of Theorenm
3.3,
ke K<=> ¥y Sent; - Taut, (OPC).
Finally, by Lemma 3.7, %€, is EAEA-formula, therefore
YV y € AEAB—> (11 EAEAB) = AEAEB,

3.9. Remark., After [ 1] had been comple ted I was infor-
med by P. H4jek that Professor D. Scott had proved the result
3.4 using different methods; Scott’s proof ‘has not been pub-
lished.
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