

Werk

Label: Article Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log76

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,4 (1977)

COVERING OF A SPACE BY NOWHERE DENSE SETS

Petr SIMON, Praha

Abstract: The estimate of the cardinality of a family of nowhere dense sets which can cover a topological space without isolated points is given by means of cofinal subsets of ordinal-valued functions from cardinals. This improves some of known results.

key words and phrases: Nowhere dense set, Novák number, #-base, partially ordered set, cofinal subset.

AMS: 54A25 Ref. Ž.: 3.967

<u>Definition</u>. Let X be a dense-in itself topological space, ND(X) the set of all nowhere dense subsets of X. Define $n(X) = \min \{|\mathcal{D}| : \mathcal{D} \in ND(X) \& \cup \mathcal{D} = X\}$ and call this cardinal invariant the Novák number of a space X.

Let us recall several known facts about the Novák number:

- (a) (Štěpánek-Vopěnka [ŠV]): If X is a nowhere separable metric space, then $n(X) = \omega_1$.
- (b) (Broughan [B]): If X is dense-in-itself metric space, then $n(X) \neq c$.
- (c) (Štěpánek-Vopěnka [ŠV]): Let X be a uniformizable space, let α , β be cardinals such that $\omega \neq \alpha < \alpha^+ \neq \beta$ and suppose that
 - 1. X admits a uniformity whose base 2 is linearly

ordered system of neighborhoods of diagonal with $|\mathcal{U}| = \infty$, and

- 2. each non-void open subset of X contains at least β pairwise disjoint non-void open subsets. Then $n(X) \preceq \alpha^+$.
- (d) (Kulpa-Szymański [KS]): Let $\alpha < \beta$ be cardinal numbers, β infinite and regular, and let X be a topological space satisfying the following:
- l. X has a $\, \sigma$ -base $\, \mathcal{P} \,$ expressible as a union of $\, \alpha \,$ disjoint families, and
- 2. each non-void open subset of X contains at least β pairwise disjoint non-void open subsets. Then $n(X) \leq \beta$.

The purpose of the present note is to prove the theorem, which is the common generalization of all results above, which gives a sharper bound for n(X) in some special cases and which can estimate n(X) for many spaces X where the above theorems are inapplicable.

Recall the following well-known notion: If (P, <) is a partially ordered set and if $K \subset P$, then K is called cofinal in P iff for each pa P there is a keK with p< k. The number cf(P) is then defined to be $\inf\{|K|: K \text{ is cofinal in } P\}$.

Consider, as usually, a cardinal number as an initial ordinal, ordered by ϵ . The set of all functions $f: \alpha \longrightarrow \beta$ $(\alpha, \beta \text{ cardinals})$ is denoted by α and ordered by f < g iff $f(\xi) \in g(\xi)$ for all $\xi \in \alpha$. The number $cf(\alpha)$ is then taken with respect to the order just described.

<u>Definition</u>. If X is a set, $a \in \mathcal{F}(X)$ and $x \in X$, then

 $pc(\mathcal{Q}, \mathbf{x})$ is, by definition, $|\{A \in \mathcal{Q} : \mathbf{x} \in A\}|$ and $pc(\mathcal{Q}) = \sup \{pc(\mathcal{Q}, \mathbf{x}) : \mathbf{x} \in X\}.$

Now we are prepared to state the main result:

Theorem. Let X be a topological space and let α , β be cardinal numbers, β infinite, such that the following are true:

(i) X has a η-base B expressible as a union
↓ { B_ξ : ξ ∈ α }, where pc(B_ξ) < cf(β) for each ξ ∈ α ,
(ii) to each B ∈ B one can assign a family { B(η):
: η ∈ β } of non-void open subsets of B with pc { B(η):
: η ∈ β } < cf(β).
Then n(X) ≤ cf(^κβ).

Remark. It is clear that (d) is a special case of our theorem: it suffices to take $\mathfrak{F} = \mathfrak{P}$ and notice that the choice $\alpha < \beta$ with β regular implies $\mathrm{cf}({}^{\alpha}\beta) = \beta$. (a) and (c) can be easily deduced from (d); the implication (d) \longrightarrow (a) has already been established in [KS]. The proof of (b) goes as follows: Each metrizable space has a \mathfrak{F} -discrete base, each non-void open subset in a dense-in-it-self Hausdorff space contains infinitely many disjoint open non-void subsets, so the choice $\alpha = \beta = \omega$ is all right and $\mathrm{cf}({}^{\omega}\omega)$ cannot be greater than c.

For $f \in {}^{\infty}/3$ let $X_{\mathbf{f}} = \bigcap \{X_{\mathbf{f},\mathbf{f}(\mathbf{f})} : \mathbf{f} \in \infty \}$. As an in-

tersection of closed sets, each $X_{\mathbf{f}}$ is closed.

Observation 2. For each $f \in {}^{\infty}\beta$, X_{f} is nowhere dense. Let $\emptyset \neq U \subset X$ open be given. \mathfrak{B} is a π -base, so one can find some $\xi \in \infty$ and a $B \in \mathfrak{B}_{\xi}$ with $\emptyset \neq B \subset U$. For $(Uf(\xi), U \in \beta)$, by definition of B(U), $\emptyset \neq B(U) \subset B \subset U$ and, by definition of $X_{\xi}, f(\xi)$, $B(U) \cap X_{\xi} \subset B(U) \cap X_{\xi}, f(\xi) = \emptyset$. Since U was chosen arbitrarily, X_{ξ} is nowhere dense.

Observation 3. Let f,g ϵ $^{\alpha}\beta$, f<g. Then $X_{f} \subset X_{g}$. (An obvious consequence of the definition $X_{f,\eta}$.)

Observation 4. For each $x \in X$ there is an $f \in {}^{\alpha}\beta$ with $x \in {}^{\alpha}$ $\in X_{f}$. Fix $x \in X$. For $\xi \in {}^{\alpha}$ define $f(\xi) = \sup \{ \eta \in \beta :$ there is a $B \in \mathcal{B}_{\xi}$ with $x \in B(\eta) \}$. Notice that the assumptions (i) and (ii) imply that the set of ordinals the sup is taken from is of cardinality less than $cf(\beta)$, thus $f \in {}^{\alpha}\beta$ is well-defined, because $f(\xi) \in \beta$. Clearly $x \in X_{f}$.

Combining the last two observations, we obtain immediately the final

Observation 5: If $K \subset {}^{\alpha}\beta$ is cofinal in ${}^{\alpha}\beta$, then $\bigcup \{X_{\underline{f}}: f \in K\} = X$, which completes the proof.

Corollary of the proof: Let X, α , β satisfy the assumptions of the Theorem and suppose that $\alpha \beta$ admits a well-ordered sequence (by <) of functions, which is cofinal and of cardinality $\mathrm{cf}(\alpha \beta)$. Then X can be covered by a monotonically increasing sequence (of cardinality $\mathrm{cf}(\alpha \beta)$) of nowhere dense sets.

(Use the Observation 3.)

Examples. A. A nowhere separable Souslin line L may

serve as an example of a space where (d) fails if one tries to estimate its Novák number. Recall that a Souslin line L is a connected LOTS with $c(L) = \omega$, $d(L) = \omega_1$. Since $\pi(X) \geq d(X)$ for any topological space, no π -basis for L is expressible as a union of less than ω_1 disjoint subfamilies, necessarily $\alpha \geq \omega_1$. On the other hand, no open subset of L admits more than countably many disjoint open subsets, thus $\beta \neq \omega$. Hence the assumptions of (d) can never be satisfied in this case.

It is widely known that a direct computation gives $n(L) \neq \omega_1$. Let us give another proof of this fact using our Theorem. Notice that L admits a π -basis $\mathfrak B$ with $|\mathfrak B| = \omega_1$ and $pc(\mathfrak B) = \omega$. Set $\alpha = 1$, $\mathfrak B = \mathfrak B_0$ (= $\bigcup \{ \mathfrak B_{\S} : \{ < 1 \} \}$), and assign to each $B \in \mathfrak B$ the family $\{ B(\eta) : \{ \gamma < \omega_1 \} = \{ B' \in \mathfrak B : B' \subset B \}$. The Theorem applies: $n(L) \neq cf(^1\omega_1) = \omega_1$.

B. The inequality $pc(\mathfrak{B}_{\xi}) < cf(\beta)$ cannot be replaced by $pc(\mathfrak{B}_{\xi}) \le cf(\beta)$ in (i) of the Theorem. As usual, denote by N* the space β N - N, where N is a countable discrete set. Clearly $n(N*) > \omega_1$ without any set-theoretical assumption.

But assume $c = \omega_{\omega_1}$, which is consistent with ZFC. Under this assumption N* has a π -basis $\mathcal B$ such that $|\mathcal B| = c$ and $\operatorname{pc}(\mathcal B) \not= \omega_1$, so let $\infty = 1$, $\mathcal B = \mathcal B_0$. For $\mathcal B \in \mathcal B$ let $\{\mathcal B(\eta): \eta < c\}$ be an arbitrary family of pairwise disjoint nonempty clopen subsets of $\mathcal B$, thus $\operatorname{pc}\{\mathcal B(\eta): \eta < c\} = 1$ for every $\mathcal B \in \mathcal B$.

Applying the Theorem despite the fact that (i) is not

satisfied, one has (remember that $c = \omega_{\omega_1}$) $n(N^*) \le cf(^1c) = cf(c) = \omega_1$, an obviously false result.

Remark. The referee has raised a question, whether there exists a space X such that $n(X) < cf({}^{\alpha}\beta)$ for every pair of cardinals α , β suitable for using the Theorem. Though the present author believes that such a space exists at least in some model of set theory, he regrets that he is not able to exhibit it.

References

- [B] Kevin A. BROUGHAN: The intersection of a continuum of open dense sets, Bull. Austral. Math. Soc. 16 (1977), 267-272.
- [BPS] B. BALCAR, J. PELANT, P. SIMON: The space of ultrafilters on N covered by nowhere dense sets (to appear).
- [H] S.H. HECHLER: Independence results concerning the number of nowhere dense sets necessary to cover the real line, Acta Math. Acad. Sci. Hungar. 24 (1973), 27-32.
- [J] I. JUHÁSZ: Cardinal functions in topology, Mathematical Centre Tracts 34, Amsterdam 1975.
- [KcS] A. KUCIA, A. SZYMAŃSKI: Absolute points in \$N N, Czech. Math. J. 26(101)(1976), 381-387.
- [KS] W. KULPA, A. SZYMAŃSKI: Decompositions into nowhere dense sets, Bull. Acad. Polon. Sci. XXV, 1, 1977, 37-39.
- [N] J. NOVÁK: (a) On side points in compact Hausdorff spaces, Proc. Internat. Sympos. on Topology and its Applications (Budva 1972), Beograd 1973, 184.
 - (b) On side points in compact Hausdorff spaces

(to appear in Gen. Top. and Appl. .)

[ŠV] P. ŠTĚPÁNEK, P. VOPĚNKA: Decomposition of metric space into nowhere dense sets, Comment. Math. Univ. Carolinae 8(1967), 387-404, 567-568.

Matematický ústav Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 26.9. 1977)