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NOTE TO PERIODIC SOLVABILITY OF THE BOUNDARY VALUE PROBLEM
FOR NONLINEAR HEAT EQUATION

Vénceslava STASTNOVA and Svatopluk FUELK, Praha

Abstract: There is proved the existence of an w -pe-
riodic solution of the boundary value problem for nonlinear
heat equation. The proof is based on the Kazdan-Warner met-
hod (introduced for the solvability of boundary value prob-
lems for nonlire ar partial differential equations of elliptic
type) and on the theorem of Kolesov (where the existence of
an ® -periodic solution of quasilinear parabolic equation
follows)from the existence of w-periodic sub- and super-so-
lutions).
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Let @ > 0. Suppose that £(t,x) is @ -periodic func-
tion in t. Let v : R1—> Rl be & given real valued function
defined on the real line Rl. This note is devoted to the stu-

dy of the existence of a solution of the problem
uy (t,x) = u _(t,x) - u(t,x) + y(u(t,x)) = £(t,x),
(t,x)eQ = R x (0,a),
(1) u(t,0) = u(t,or) =0, te R
u(t +w,x) = u(t,x), (t,x)eQq.
In contrast to the previous results obtained for (1) by
various authors (for an extensive bibliography see the pre-

pared book of O. Vejvoda and Comp. [ 51) our result will not
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be restricted to small nonlinearities although ¥ will have
to satisfy the monotonicity condition and certain one-side
growth condition. The obtained result is in the 8spirit of a
recent work by Kazdan-Warner [2] on boundary value problems
for elliptic partial differential equations and may be gene-
ralized for higher dimensional analogue of the problem (1).
The result is very close to Theorem V.1 from Brézis-Niren-
berg [1], where the generalized solutions are considered and

where also different one-side growth condition is supposed.
In the sequel we shall suppose:

(2) £(t,x) is @ -periodic in the variable t and satisfies
on Q the HBlder condition with some exponent o ¢ (0,17 ;

(3) the function L Rl— gl satisfies on arbitrary com-
pact subinterval of Rl the HBlder condition;

(4) the function ¥ is nondecreasing on R and there exists
¢ £ 0 such that
Y(§)2-c 1 +§?)
for arbitrary § e Rl;
(5) j}’ft_nwv(f )< y(0)<gl_i;l; y(g).

The continuous function u* (t,x) on q is said to be a
solution of (1) if it is @ -periodic in t, satisfies the
boundary conditions (1,), has the derivatives uX ,u¥ onQ
and verifies the equation (1y).

The main goal of this note is the following theorem.

Theorem. Suppose (2) - (5). Then the problem (1) has
at least one solution if and only if
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The proof of Theorem

(i) Let (1) have a solution u* (t,x). Then

@ ar @

f f £(t,x) sin x dx dt = f f}r(u* (t,x)) sin x dx at
0 o %

and from the assumption (5) it follows the necessity of (6).
(Note that for the using of the integration by parts we apply
the regularity result that u* is HSlder-continuous - see e.g.
[4, Chap. 5, Thm. 1.1].)

(ii) Suppose (6). Then there exists a constant ke r
such that 2w (k) is close to

@
a= j; fa f(t,x) sin x dx dt.

From the absolute continuity of the Lebesgue integral it is
possible to perturb the constant k onto smooth function z(x)

on [0,or] with 2(0) = z(3r) = O and such that
b4
a= a)f; y (z(x)) sin x ax.
(The reader is invited to sketch a picture and to make a pre-
cise proof of the above assertion.)
(iii) Put
P: (t,x)— £(t,x) - ¥ (2(x)), (t,x)eQ.
Then for arbitrary continuously differentiable function u sa-
tisfying (12),(13) and
z(x)&u(t,x), (t,x)eQ

we have
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(7) f£(t,x) - ¥ (u(t,x)) § P(t,x), (t,x)eQ.

Analogously, for arbitrary continuously differentiable func-
tion «(t,x) satisfying (12),(13) and

u(t,x)& z(x), (t,x)eq
it is

P(t,x)& £(t,x) - 3 (u(t,x)), (t,x)e Q.

(iv) The problem
Ve " Vyx = V=P onQ
(8) v(t,0) = v(t,#) = 0, te R
v(t +w,x) = v(t,x) on Q

has at least one solution v* (t,x) for

W
f f P(t,x) sin x dx dt = 0.
0 Yo

1 such that

Choose > € R
(9) 2 8in x + v¥* (t,x)2 z(x), (t,x)eqQ.

(Note that if v(t,x) has continuous partial derivatives of

the first order on Q and satisfies (8,),(85) then

lv(t )l _ Iv(t,x) - v(t,0) x X
sin x X * T8in x 6,2?&’?) sin x °

. lv (t,x)
“'xs)uga ve(t,x)|

from which it follows (9) on Rleo,'g) and analogously on
R'x g, 1.)

Put
U: (t,x) > 7 8in x + v¥ (t,x), (t,x)eq.

Then obviously Wlt,x) satisfies (12),(13) and from (7),(9)
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we have
Ty (t,x) - U (t,x) - U(t,x) + y(T(t,x))Z £(t,x), (t,x)eQ.
Analogously, we choose o ¢ R' such that

u: (t,x) —> Jsin x + v*(t,x) ¢ z(x), (t,x)eQq.
Then u(t,x) satisfies (12),(13) and
v (t,x) - u  (t,x) - ult,x) + yult,x))€ £(t,x), (t,x)s Q.
Obviously

u(t,x) & a(t,x), (tx)eQqQ.

(v) The result of Kolesov (see [3]) implies that the-
re exists at least one solntion u* (t,x) of (1) which, mo-

reover, satisfies

u(t,x)& u* (t,x)¢ 9(t,x), (t,x)eq.
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