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Introduction. Let X be a real Banach space with a

L
topological dual X* , T: X—> X & maximal monotone mul-
tivalued mapping whose domain has nonempty interior, i.e.,
int D(T)# @. Two theorems are the main result of this pa-

per, which we can formulate roughly as follows:

Theorem A (om singlevaluedness of T). If the dual X*

is strictly convex, then the set
MV(T) = {xe D(T) | T(x) is not a singleton %
if of the first (Baire’s) category in X.

Theorem B (on (strong) upper semicontinuity of T). If
the dual X¥ is strictly convex and has the property (H)

-19 -



(i.e., if {w }c X* converges weakly*to we X* and

lw, i — llwll, then w,—> w), then there exists a set
Ccint D(T) dense residual in int D(T) such that for eve=-
ry xe C the set T(x) is a singleton and T is upper semi-
continuous at x, i.e., for ue D(T) sufficiently close to
X, the set T(u) lies in an arbitrary small given (norm)

neighbourhood of T(x).

See for details Theorems 2,1 - 2.3, Remarks 2,2 - 2,4
and the definition formulas (2.1) and (2.2).

Let us recall that the property of a mapping T: X —>
— zx* to be maximal monotone is independent of which
equivalent norm is taken in X. Hence, by using the renorm-
ing statement of Amir and Lindenstrauss L2]1, we obtain that
the eonclusion of Theorem A holds for any WCG X, especial-
ly, for X reflexive or separable. It follows from the re-
norming statement of John and Zizler [ 71 that the conclu-
sion of Theorem B is valid for such WCG X which have a WC3
dual X* (more generally, for those WCG X which mve an e-
quivalent Fréchet differentiable norm, see [8]), especially,
for X reflexive or such X whose dual X* is separable .

Using the simple fact that a subdifferential of a con-
vex lower semicontinuous function is a monotone multivalued
mapping, we get, from Theorems A and B, the well-known re-
sults of Asplund [3] concerning the GAteaux and Fréchet dif-
ferentiability of convex functions, see Remark 2.6,

The theorem on singlevaluedness of T for X separable
has been proved by Zarantonello (211 in a geometrical way,
later, topologically, by Kenderov [12] and Robert [16]1 and
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more generally, for X with a strictly convex dual X* by
Kenderov [10]l. Our Theorem 2.1 is a little improvement of
Kenderov’s result (101, where it is supposed D(T) = X,

The theorem dealing with (strong) upper semicontinui-
ty of T for X with a separable dual X* has been proved by
Robert [17].

The present paper was stimula ted by the ideas of Ken-
derov [101, by means of whichhe derives the theorem on sing-
levaluedness of T. In doing so he uses the well-known deep
fact that T is weakly* upper semicontinuous at each x €
€ int D(T). However, one can do with the demiclosedness of
T only, which is a simple property of maximal monotone map-
pings.

In this paper, the ideas of Kenderov [10] are generali-
zed to demiclosed multivalued mappings from a metric space P
to a dual X* (see Lemmas 1.1 - 1.3) and extended to the
8tudy of the (strong) continuity of such mappings (see Lem-
ma 1.4), and so we get the topological means to prove Theo-
rems 2,1 - 2,3,

The method proposed can be also used for the study of
maximal accretive mappings (see, e.g.,[13] for definition).

The author would like to express his deepest gratitude

to Josef Kolomy for advice and many helpful suggestions.

§ O. Preliminaries. Let U, V be arbitrary sets. Then
each nonempty subset T of UxV is called a multivalued map-
ping from U to V and we write T: U—> 2, The set T°1 =
= {(v,u)e V=U | (u,v)e T} ie called the inverse multival-

ued mapping to T. Thus T™1: v—s 2V, Obviousy, (1-1)~1= o,
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For each ue U, we set
T(u) = {veV| (u,v)eT?.
If the set T(u) consists of one point only, we denote this
point by the symbol T(u), too. The set
D(T) = L ueU| T(u)+p 3
is called the domain of T, the set R(T) = D(T-l), the range
of T. It is introduced by many authors the graph G(T) of a
multivalued mapping T by '
G(T) = { (u,v)eUxV |veT(u)?.
Obviously, G(T) coincides with T. Therefore we shall not
distinguish between a multivalued mapping and its graph.
A subset Tc U=V is called a singlevalued mapping, if
the following implication holds:

(u,vy), (u,vy)e T= vy = Vpe

In this case, we write T: U—V,

A subset Tlc TcUxV is called a selection of the mul-
tivalued mapping T, if T, is singlevalued and D(Tl) = D(T).

Throughout the paper R will denote the set of real num-
bers endowed with the usual topology, X a real normed line-
ar space, X* its topological dual (the norm on X* is dual
to the norm on X), P a metric space., If A is a subset of P,
then int A will denote the topological interior of A and cl A
the closure of A. We recall that a subset Ac P is called re-
sidual in P if the set P\ A is of the first (Baire’s) cate-
gory in P. The arrows "—» ", ", " will demte the strong
and weak ¥ convergence, respectively.

A singlevalued mapping f: P—> RU{+ @} is called a

function. The set
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dom f = fueD(f)| f(u)c+ 03

is called the effective domain of f.
A function f is said to be lower semicontinuous if

¥YaeR [the set {ueP|f(u)ga3 is closed]

Let T: P—» X* be a singlevalued mapping from a met-
ric space P to a dual X* and let ue D(T). T is said to be

demicontinuous at u if.

¥ sequence fup 3 ¢ D(T) [u,—> U= T(u, ) — T(u)],
2
let T: P—> 2x be & multivalued mapping from a metric space
P to a dual X* ., T is said to be demiclosed if

YueP ¥weX* ¥ net {(ug W )y A3 T

[, — u(N), Yo —= w(A), sup -(Ilvq:”cc €A} < +00) =
- (u,w)eT]),

*

Let T: X —> 2% be a multivalued mapping from a real
normed linear space X to its dual X¥ ., T is said to be mono-
tone if (for x¢ X and x*e X* the symbol < x* ,x) denotes

the value of the functional x* at x)
¥(x,x*)eT ¥(y,y*¥)e T [ x*- yk X -¥y>2017,

and maximal monotone if T is not properly contained in any

other monotone mapping.

§ 1, lemmas on continuity of demiclosed mappings,
*
Lemma 1,1, let T: P—»>2X be a demiclosed multiva-

lued mapring from a metric space P to a dual X* of a norm-

ed linear space X,
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Then the function fp: P—>RU{ +0} defined by

(1.1) fp(u) = inf {Iwl | we T(u)} , UEP

is lower semicontinuous.
Proof: Let @eR be arbitrary. We have to show that
the set
A= -{uePIfT(u)éa?

is closed. let uecl A amd let -iu.n§ C A be a sequence such

that u —s u. For each n = 1,2,..., we f£ind wne€ T(uy) such

that

fT(un)s llwn "‘f'_r(“n) + 1/n.
Thus
(1.2) lw, l<a+1/m, n-= 152,55

and so the sequence {wn} is bounded, hence w* -praecon-

pact. Therefore there is we X* ang a subnet fw, ,oc €A}
o<

of the sequence {wn} such that

(1.3) vy — W)
oK

And since u’b——-) u(A), too, and T is demiclosed, (u,w)e T.
From the weak* 1lower semicontinuity (w* «l.s.c., in abbre-
viation) of the norm on X* » by using (1.2) and (1.3), we

have

lwi & li;‘knr fl wn«' I £ a,

Thus fr(u)£ lwi £ a, i.e., u€A. The closedness of A is

proved, which complstes the proof, Q.E.D.
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We recall two well-known propositions.

Proposition 1.1 ([(5, 13.4)). If S: P—> Q is a single-

valued mapping from a metric space P to a metric space Q,
then the set C(S) of all those points at which S is conti-
nuous, is G4 im D(S), i.e., the set NC(S) = D(S)\ C(S) is
Fg in D(S).

Proposition 1.2, Let P be a metric space and f: P—>

—> R U{ +@3% a lower semicontinuous function. Then the
set C(f) of all those points at which f is continuous, is
residual in dom £ , i.e., the set NC(f) = dom £\ C(f) is of
the first (Baire’s) category in dom f.

Proof: See 14,7.6 and 14.5.2 in [5].

Lemma 1.2. Let T: P—> 2)("A be a demiclosed multiva~
lued mapping from a metric space P to a dual X* of a norm-
ed linear space X, Let the function fT be defined by (1l.1l).

Then the set C(fT) of all those points at which f, is
continuous, is residual G4 in D(T).

Proof: It follows immediately from Lemma 1.1 and Pro-

positions 1.1 and 1.2.

*
Let T: P—> 2X be a multivalued mapping. A selection

T, of T is said to be lower (with respect to the norm on
X*), if

(1.4) (uw)eT=> 1T (W& lwl,
Obviously,

(1.5) NT ()l = £4.(u) for ue D(T).

We shall show that if T is demiclosed, then there exists
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at least one lower selection of T. Let ue D(T) be arbitra-

ry. Denote ¢ = inf { Il wll | weT(u)} and set
K=§{weT(u) |lwlge +13.

Then K is a nonempty bounded and w* -closed subset of X*,
hence w* -compact. So the norm on X* , which is w*.,1.s.c.,
attains its minimum on K, i.e., there is a w € Kc T(u) such
that llw Il = c.

For every singlevalued mapping S: P— X* , we intro-

duce the sets

cd(s) =4{ue D(S) | S is demicontinuous at uj ,
mcd(s) = nes)\c(s).

lemma 1.3. ILet T: P—> ZX* be a demicloged multiva-
lued mapping from a metric space P to a dual X* of a norm-
ed linear space X, fp the function defined by (1.1). Let
theres exist a unique lower selection T, of T.

Then, if f; is continuous at ue D(T), T, is demiconti-

nuous at u:
(1.6) cieprecd(r)), i.e., Nc¥(T))c NC(£y)

and tence, the set C3(T,) is residual in D(T).

Proof: Let ueC(fy) be arbitrary., Let {u 3 be a se-
quence in D(T) such that u, —> u. Since (1.5) holde ard
ueClfy),

(L.7) T Ca) Il —= 2 ()l ,

hence, the sequence {TO(%H is bounded. It implies that
from any subsequence of {To(un)} , We can extract a subnet

converging weakly* to some we X*, Then the demiclosedness
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of T gives that (u,w)e T, hence, by (1.4), lwiZ | T (w .
But w¥ ,1.s.c. of the norm on X*, and (1.7) implies A w il £
£UT ()| . Thus [wl = KT,(u)ll . From here, and from
the uniqucness of the lower selection of T, we obtain w =
= To(u). It means that the whole sequence £ To(%” is con-
verging weakly* to T,(u), so that u(Cd(To), which proves
(1.6). Finally, it follows from (1.6), by Lemme 1.2 , that
the set Cd(To) is residual in D(T), Q.E.D.

Corollary l.1. Let S: P—= X* be a demiclosed single-
valued mapping from a metric space P to a dual X* of a nor-
med linear space X.

Then the set CI(S) of all those points at which S is

demicontinuous, is residual in D(S).

Lemma 1.4, Let P be a metric space and X a normed li-
near space whose dual X* has the property (H)., Let T: P—s
_’ZX* be a demiclosed multivalued mapping and let there
exist a unique lower selection To of T, Let f,r be the funce
tion defined by (1.1).

Then To is continuous at ue D(T) iff fT is continuous

at u:
(1.8) C(TO) = C(f,n), i.e,, NC(TO) = NC(fT)

and hence, the set C(To) is residual G, in D(T).
Proof: Since X* has the property (H), for every we X*

and for every sequence {wn} cX*, ne following equivalen-

ce holds

(1.9) Wp—> W(=>(w — w and hwy l—> U wi ),
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Let ue D(T) and let fu,% be a sequence in D(T) such that
u,— u. If we set w = T,(w) and w, =T (u), n =1,2,..,
in (1.9), we obtain

Tolu,)— To(u)¢=>('r°(un)—; To(u) and | Tyl )l —
— To(u)ll e

Therefore (see (1.5)),
- d
C(To) = C(fr)nc (To).

But, by Lemma 1.3, we have C(fy)c C%(T ), thus (1.8) holds.
The rest of the conclusion of the Lemma follows from the
identity (1.8) by Lemma 1.2, Q.E.D.

Corollary 1.2. Let P be a metric space, X a normed li-
near space whose dual X* has the property (H). Let S: P—>
—> X* be a demiclosed singlevalued mapping.

Then the set C(S) of all those points at which S is con-

tinuous, is residual G4, in D(S),.

7 Gorollary 1.3. Let S: P—»X be a demiclosed single-
valued mapping from a metric space P to a reflexive Banach
space X. Then the set C(S) of all those points at which S
is continuous, is residual Go~ in D(S).

Proof: It follows immediately from the renorming sta-
tement of Troyanski (20] by Corollary 1.2, where we write
X* instead of X,

It should be noted that, in the book of Alexiewicz [
V.2.1.], there is a similer statement for X separable:
Let S: P—> X be a singlevalued mapping (with D(S) =

= P) from a comple te metric space P to a separable normed
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linear space X such that
Uy w ==5¢x*,S(w)> —s < x*, S(u)) for every
x*e2™ |

where Z* is such a subset of X* that for every xe€ X,
Ixll =sup §<x*,x) | x*e 2*, lx*| &£ 13.

Then the set NC(S) of all those points at which S is

not continuous, is of the first category in P,

If S: Y—>X is a singlevalued linear closed (i.e.,

¥o— ¥y and S(yn)—-—bx imply y € D(S) and x = S(y)) mapping
from a normed linear space Y to a reflexive Banach space X,
with D(S) of the secord category in itself, we receive from
Corollary 1.3 with help of Mazur’s theorem that S is conti-
nuous, which is a special case of Banach’s closed graph

theoren,

§ 2. Theorems on singlevaluedness and (strong) upper

semicontinuity of maximal monotone mappings

We start by the following simple lemma:

lemma 2.1. A maximal monotone multivalued mapping T:
: X——»Zx* from a normed linear space X to its dual X* is
demiclosed and has at least one lower selection,

If, in addition, X* is strictly convex, there is a u-
nique lower selection 'I'o of T,

Proof: Let {(x_ W )y € A} Dbe aret in T such
that

x — x(A), w,— w(A), sup {I w llleceAdcreoo.
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Let (y,y*)e T be arbitrary. From the monotonicity of T,

we have

{w, ~y¥*,x, -y>Z0forall < €A ,

and passing to a limit, we get {w=-y* 6 x-y > & O,
Since (y,y¥ )&« T was arbitrary, the maximal monotonicity
of T gives (x,w)e T. Thus the demiclosedness of T is pro-
ved and therefore T has at 1east one lower selection.
Further, let X* be strictly convex. Suppose that for
some x& D(T), there are w,ze T(x) such that Iwl = f!zlil =
=c=inf {ll x*[ | x¥& T(x)? . Then the convexity of T(x)
(see, e.g., [4)) gives (w + 2z)/2& T(x), hence I(w + z)/212
& c. But, on the other hand, fl(w + z)/2ll£c/2 + ¢/2 = c.
Thus the strict convexity of X* yields w = z. Hence, two

different lower selections of T cannot exist. Q.E.D.

Let M be a nonempty subset of a normed linear space X.

Following Kato [9], we introduce the set
(2.1) dint M = {xeM|cl F (M) = X},
where
(2,2) P (M) = {uaX|3A§t 3cR, t,>0, t 10,
{x+ tuic M3.

It should be noted that int M and the algebraic inte-
rior of M even are included in dint K,

Example 2,1, et H be a separable Hilbert space, fe;}

a total orthonormal system in H, We set

(2,3) """'54 t‘.’.l(ti’c R, L%qiltiltli.
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It is easy to show that the set M is convex closed (hence,
of the second category in itself) having empty algebraic
interior, but dint M4@, even M = c1 (dint M),

*
lemma 2,2, Let T: 1(—-—»2x be a monotone multivalued
mapping from & normed linear space X to its dual X* and

let Tl be an arbitrary selection of T, Denote
SV(T) = {xeD(T) T(x) is a singleton },
MV(T) = D(T)\SV(T).
Then, if T, is demicontinuous at xe€dint D(T), the set
T(x) is a singleton:
(2.4) c%(r))Naint D(T)c SV(T), i.e.,
MV(T) [\ dint D(T)c XC%(T,).

Proof: Iet xe Cd(Tl)ndint D(T). Let w be an arbitrary
element of the set T(x). For every ue Fx(D(T)) and the cor-
responding sequence 4 tn} y =0, tn.L O (see (2.1) and

(2.2)), from the monotonicity of T, we have

(Tilx+ tu) -w, (x+ t,u) -x220, n=1,2,,..,
and cancelling it by t,> 0,
{Ty(x + tu) =w,u>20, n =1,2,... .

Using the demicontinuity (even the hemicontinuity only) of

T, we then obtain that

<T(x) = w,udZ o,

Since this inequality holds for each ue Fx(D(T)), and

F (D(T)) is a dense subset in X, it must be T, (x) = w. But
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w was arbitrary element of the set T(x), hence T(x) is a

singleton, i.e., x€SV(T). Thus the lemma is proved. Q.E.D.

Remark 2.1, If T: X—> ZX* is a maximal monotone mul-
tivalued mapping from a Banach space X to X* , with int D(T)4
#7, (2.4) can be strergthened. The result of Rockafellar
[18] says that SV(T)c int D(T) and that T is locally boun-
ded at any point of int D(T). From this ami from (2.4), we

can derive the following identity

¢d(T) Nint D(T) = SV(T).

Theorem 2.1, Let X be a Banach space with a strictly

*
convex dual X* and T: X——> 2x a maximal monotone multiva-
lued mapping.

Then the set

MV(T) Ndint D(T) = {xe dint D(T) | T(x) is not a singleton?

is of the first category in D(T).
If, moreover, int D(T)# @, then the set

SV(T)Nint D(T) = { xe int D(T)| T(x) is a singleton }

is dense residual in int D(T).

Broof: The first assertion follows immediately from
Lemmas 2.2 and 1.3.

Further, let int D(T)# @#. Since the obvious inclusion
int D(T)c dint D(T) holds, the set MV(T)N int D(T) is of the
first category in D(T), hence also in X and in the open non-

empty set int D(T). Therefore the set

SV(T) N int D(T) = int D(T)~ (MV(T)N int D(T))
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is residual in int D(T) and, by Baire’s category theorem,

is dense in int D(T). Q.E.D.

Remark 2.2. Since SV(T)c int D(T) (see [18]), we can
write SV(T) instead of SV¥(T) N int D(T) in Theorem 2.1,

Theorem 2.2, Let X be a Banach space with a dual X*
which is strictly convex and has the property (H). Let T:
3 X——>2X* be a maximal monotone multivalued mapping.

Then:
(i) There exists a unique lower selection T, of T.
(ii) For each xe dint D(T) at which T, is continuous, T(x)
is a singleton.
(iii) The set C(To) of all those points at which T, is con-
tinuous, is residual G, in D(T), i.e., the set NC(T ) =
= D(T)N\ C(To) is of the first category Fs in D(T).
(iv) If, in addition, int D(T)% £, the set C(T )N int D(T)
is dense residual G4~ in int D(T).

Proof: (i) is contained in Lemme 2.1.(ii) follows from
Lemma 2.2 and the obvious inclusion C(T )c Cd(’l‘o). (iii) is
obtained by using (i) and Lemma 1.4. (iv) follows from (iii)

anéd Baire’s category theorem. Q.E.D.

Example 2.2, Let H be a separable Hilbert space, -(ei}
a total orthonormal system in H and McH the set defined by
(2.3). Define the furction ¢@: H—> RU{+c0 i as follows
@(x) = 0, if xeM, @(x) = +o0 , if x¢ M,

Obviously, & 1is a convex lower semicontinuous function.
By [19)], the subdifferential 8¢ of ¢ is a maximal mono-
tone multivalued mapping from H to H, with D(8¢q ) = M, Hen-
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ce, according to Example 2.1, int D(dg ) = &, but

dint D(8q )# P, and cl (dint D(8g )) = D(Ig ) is of the
second category in itself, It justifies the extension of
our reasoning from the class of maximal monotone mappings

T, with int D(T)# &, to that, with dint D(T)+ ¢.

If int D(T)$ @, then for the points xe€ C(T,) N int D(T),
we shall derive a little more still, namely, that at such
points x, the mapping T is (strongly) upper semicontinuous.
We shall use the following lemma,

Lemma 2,3. Let T: X—> 2x* be a monotone multivalued
mapping from a normed linear space X to its dual X* such
that int D(T)% # and let T,, T, be two arbitrary selections
of T. Denote by C(T,), C(T,) the sets of all those points

at which Ty» T, are continuous, respectively. Then

2.5) C(Ty)Nint D(T) = C(Tz)nint D(T).

Proof: In view of the symmetry of the conclusion, it
suffices to prove the inclusion ¢ in (2.5). Let xe c(ryn
Mint D(T) be arbitrary. Recall that, by Lemma 2.2, T,(x) =
= T5(x) = T(x). Let {xn}c D(T') be a sequence such that
X,—> x. Since x ¢ int D(T), we can suppose that ix, ¥ ¢
c int D(T), For each n = 1,2,,.,., we find Vo€ X so that

(2.6) Wv N£1 and ll'rz(xn) -Tx)ll - 1/n £
& <T2(xn) - T(x),vn) o

Further, for every n = 1,2,..., we choose t, € (0,1/n) so
that x, + t v eD(T).

The monotonicity of T gives
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(Tl(xn ) - T,(x,), (x, + tav,) - X, 2 Z0,
hence

(Talxpy), v, > £ < Lo, + tv))yv 2,
which together with (2.6) yields
ITy(x) - T(xj | - /n& (Tylxy + tv) - T(x),v, > £

£ Ty(x, + v, - T .

But X, + t,v,—>xand xe C(Tl). Therefore the last inequa-
lity gives that || Tylxy) = T(x) | —> 0, i.e., xe C(T,).
Q.E.D.

Theorem 2,3. Let X be a Banach space with a dual X*
which is strictly convex and has the property (H)., Let T:
: X—> Zx* be a maximal monotone multivalued mapping with
int D(T)# 2.

Then the set of all those x¢ int D(T) for which the
set T(x) is a singleton and T is upper semicontinuous at x,
i.e., given € > 0, there exists J° > 0 such that for each
ueD(T) fulfilling llx -~ u || < o » the set T(u) is includ-
ed in the € -neighbourhood of T(x), is dense residual Gy~ in
int D(T).

Proof: We set

€ = int D(T) N C(Ty),

where T, is an arbitrary selection of T. (Tranks to Lemma
2.3, the set C does not depend on the choice of Ty+) By Theo-
rem 2.2 (iv), C is dense residual Gg~ in int D(T). We shall
show that C is that set of Theorem 2.3. Let x€int D(T) be
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such that T(x) is a singleton and T is upper semicontinuous
at x. Then we easily get xe C(T), hence xe C. Conversely,
let x€ C be arbitrary. By lemm& 2.2, the set T(x) is a sin-
gleton. We shall be proving that T is upper semicontinuous
at x. Let us suppose the contrary. Then there exists an € >

=> 0 and a sequence < (un,wn) 3c T such that u,—> x and
(2.7) tw, -T(x)ll 2 e, n=1,2,... .
We define the selection T, of T as follows:
Tolu,) = wy, n = 1,2,...,
T,(u) = an arbitrary element of T(u), for u ¢{un} -
But since, by Lemma 2.3, x€ Cc C(T,),

Wy = Tolu )—> Tr(x) = T(x),

which is in contradiction with (2.7). It means T is upper

semicontinuous at x. Q.E.D.

Remark 2.,3. The second part of Theorem 2.1, and Theo-
rem 2.3 are valid for arbitrary monotone multivalued mapp-

*
ing T: X—» 2% | with int D(T)+g.

Rewark 2.4. Let T: X—> 2}(* be a maximal monotone
multivalued mapping from a Banach space X to its dual X*
such that int D(T)# @. Then, by Rockafellar’s result [181],
D(T)cecl (int D(T)), and hence, the set D(T)\ int D(T) is
nowhere dense in D(T). Therefore the text "in int D(T)" in
Theorems 2.1 - 2.3 can be replaced by "in D(T)" (provided

that T is maximal monotone),
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Remark 2.5. A somewhat different method for obtain-
ing the results above, in the special case when X is re-

flexive, is given in [6],

Remark 2.6. Iet f: X—>RU{+®3} be a convex low-
er semicontinuous function, with D(f) = X and int (dom )+
# @. Then, it can be easily seen that the subdifferential
Of of £ is a monotone multivalued mepping. Using [141, we .
ime diately derive from Theorem 2.1 and Remark 2.3 that if
X* is strictly convex, then the set of those points at
which £ is GAteaux differentiable, is dense residual in
int (dom f), which is included in Theorem 2 in [3]. It fol-
lows from Theorem 2.3 and Remark 2.3 by means of Proposi-
tion (ii) in [17] that if X* is strictly convex and has
the property (H), then the set of those points at which f
is Fréchet differentiable, is dense residual G4 in
int (dom f). This result is a little stronger than Theorem
1 in [3], where it is required for X* to be locally unifor-

mly convex. However, our statement is included in [15].

Added in proof. After this paper had been prepared for
publication, the author received the preprint by P. Kenderov
and R. Robert: Nouveaux résultats génériques sur les opéra-
teurs monotones dans les espaces de Banach, which will ap-
pear in C.R. Acad. Sci. Paris . Here it i¢ independently
shown that the conclusion of Theorem B is valid, if X™ has
the property (H), where rets are taken instead of sequences,
without the assumption of strict convexitonf X*,

From the sketch of the oroofs in the quotad work, it is

obvious that cur methods of the procfs are rather different,
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