

Werk

Label: Article Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

ON SINGLEVALUEDNESS AND (STRONG) UPPER SEMICONTINUITY OF MAXIMAL MONOTONE MAPPINGS

Marián FABIAN, Praha

Abstract: Under suitable assumptions on the geometry of a dual X^* of a real Banach space X it is shown that a maximal monotone multivalued mapping T from X to X^* with imt $D(T) \neq \emptyset$ is singlevalued and upper semicontinuous on a dense residual subset of int D(T).

Key words: Banach space, demiclosed multivalued mapping, singlevaluedness, upper semicontinuity, differentiability.

AMS: Primary: 47H05 Ref. Z.: 7.978.425 Secondary 54C05, 46B05 3.966, 7.972.25

<u>Introduction</u>. Let X be a real Banach space with a topological dual X^* , T: $X \longrightarrow 2^{X^*}$ a maximal monotone multivalued mapping whose domain has nonempty interior, i.e., int $D(T) \neq \emptyset$. Two theorems are the main result of this paper, which we can formulate roughly as follows:

Theorem A (on single-valuedness of T). If the dual X^* is strictly convex, then the set

 $MV(T) = \{x \in D(T) \mid T(x) \text{ is not a singleton }\}$ if of the first (Baire's) category in X.

Theorem B (on (strong) upper semicontinuity of T). If the dual X* is strictly convex and has the property (H) (i.e., if $\{w_n\} \subset X^*$ converges weakly* to $w \in X^*$ and $\|w_n\| \longrightarrow \|w\|$, then $w_n \longrightarrow w$), then there exists a set $C \subset A$ int D(T) dense residual in int D(T) such that for every $x \in C$ the set T(x) is a singleton and T is upper semicontinuous at x, i.e., for $u \in D(T)$ sufficiently close to x, the set T(u) lies in an arbitrary small given (norm) neighbourhood of T(x).

See for details Theorems 2.1 - 2.3, Remarks 2.2 - 2.4 and the definition formulas (2.1) and (2.2).

Let us recall that the property of a mapping T: X

2^{X*} to be maximal monotone is independent of which equivalent norm is taken in X. Hence, by using the renorming statement of Amir and Lindenstrauss [2], we obtain that the conclusion of Theorem A holds for any WCG X, especially, for X reflexive or separable. It follows from the renorming statement of John and Zizler [7] that the conclusion of Theorem B is valid for such WCG X which have a WCG dual X* (more generally, for those WCG X which have an equivalent Fréchet differentiable norm, see [8]), especially, for X reflexive or such X whose dual X* is separable.

Using the simple fact that a subdifferential of a convex lower semicontinuous function is a monotone multivalued mapping, we get, from Theorems A and B, the well-known results of Asplund [3] concerning the Gâteaux and Fréchet differentiability of convex functions, see Remark 2.6.

The theorem on singlevaluedness of T for X separable has been proved by Zarantonello [21] in a geometrical way, later, topologically, by Kenderov [12] and Robert [16] and

more generally, for X with a strictly convex dual X^* by Kenderov [10]. Our Theorem 2.1 is a little improvement of Kenderov's result [10], where it is supposed D(T) = X.

The theorem dealing with (strong) upper semicontinuity of T for X with a separable dual X* has been proved by Robert [17].

The present paper was stimulated by the ideas of Keniderov [10], by means of which he derives the theorem on single-valuedness of T. In doing so he uses the well-known deep fact that T is weakly* upper semicontinuous at each $x \in \epsilon$ int D(T). However, one can do with the demiclosedness of T only, which is a simple property of maximal monotone mappings.

In this paper, the ideas of Kenderov [10] are generalized to demiclosed multivalued mappings from a metric space P to a dual X* (see Lemmas 1.1 - 1.3) and extended to the study of the (strong) continuity of such mappings (see Lemma 1.4), and so we get the topological means to prove Theorems 2.1 - 2.3.

The method proposed can be also used for the study of maximal accretive mappings (see, e.g.,[13] for definition).

The author would like to express his deepest gratitude to Josef Kolomý for advice and many helpful suggestions.

§ 0. <u>Preliminaries</u>. Let U, V be arbitrary sets. Then each nonempty subset T of U×V is called a multivalued mapping from U to V and we write T: U \longrightarrow 2^V. The set T⁻¹ = = {(v,u) \in V×U | (u,v) \in T} is called the inverse multivalued mapping to T. Thus T⁻¹: V \longrightarrow 2^U. Obviously, (T⁻¹)⁻¹= T.

For each ue U, we set

$$T(u) = \{ v \in V \mid (u, v) \in T \}.$$

If the set T(u) consists of one point only, we denote this point by the symbol T(u), too. The set

$$D(T) = \{ u \in U \mid T(u) \neq \emptyset \}$$

is called the domain of T, the set $R(T) = D(T^{-1})$, the range of T. It is introduced by many authors the graph G(T) of a multivalued mapping T by

$$G(T) = \{(u,v) \in U \times V \mid v \in T(u)\}.$$

Obviously, G(T) coincides with T. Therefore we shall not distinguish between a multivalued mapping and its graph.

A subset $T \subset U \times V$ is called a singlevalued mapping, if the following implication holds:

$$(\mathbf{u}, \mathbf{v}_1), \ (\mathbf{u}, \mathbf{v}_2) \in \mathbf{T} \Longrightarrow \mathbf{v}_1 = \mathbf{v}_2.$$

In this case, we write T: $U \longrightarrow V$.

A subset $T_1 \subset T \subset U \times V$ is called a selection of the multivalued mapping T, if T_1 is singlevalued and $D(T_1) = D(T)$.

Throughout the paper R will denote the set of real numbers endowed with the usual topology, X a real normed linear space, X* its topological dual (the norm on X* is dual to the norm on X), P a metric space. If A is a subset of P, then int A will denote the topological interior of A and cl A the closure of A. We recall that a subset Ac P is called residual in P if the set P\A is of the first (Baire's) category in P. The arrows " -> ", " -- " will demote the strong and weak* convergence, respectively.

A singlevalued mapping $f: P \longrightarrow R \cup \{+\infty\}$ is called a function. The set

 $dom f = \{ u \in D(f) \mid f(u) < + \infty \}$

is called the effective domain of f.

A function f is said to be lower semicontinuous if

 $\forall a \in R [the set \{u \in P \mid f(u) \leq a\} \text{ is closed}]$

Let T: $P \longrightarrow X^*$ be a singlevalued mapping from a metric space P to a dual X^* and let $u \in D(T)$. T is said to be demicontinuous at u if

 \forall sequence $\{u_n\} \subset D(T) [u_n \longrightarrow u \longrightarrow T(u_n) \longrightarrow T(u)]$,

Let T: $P \longrightarrow 2^{X^*}$ be a multivalued mapping from a metric space P to a dual X^* . T is said to be demiclosed if

 $\forall u \in P \ \forall w \in X^* \ \forall \text{ net } \{(u_{\infty}, w_{\infty}), \infty \in \Lambda \} \subset T$

 $[(u_{\infty} \longrightarrow u(\Lambda), w_{\infty} \longrightarrow w(\Lambda), \sup \{||w_{\infty}|| | \alpha \in \Lambda\} < +\infty) \implies$ $\longrightarrow (u,w) \in T].$

Let T: $X \longrightarrow 2^{X^*}$ be a multivalued mapping from a real normed linear space X to its dual X^* . T is said to be monotone if (for $x \in X$ and $x^* \in X^*$ the symbol $\langle x^*, x \rangle$ denotes the value of the functional x^* at x)

 $\forall (x,x^*) \in T \ \forall (y,y^*) \in T \ [\langle x^*-y^*,x-y \rangle \ge 0]$, and maximal monotone if T is not properly contained in any other monotone mapping.

\$ 1. Lemmas on continuity of demiclosed mappings.

Lemma 1.1. Let T: $P \longrightarrow 2^{X^*}$ be a demiclosed multivalued mapping from a metric space P to a dual X^* of a normed linear space X.

Then the function $f_T: P \longrightarrow R \cup \{+\infty\}$ defined by (1.1) $f_T(u) = \inf \{\|w\| \mid w \in T(u)\}, u \in P$

is lower semicontinuous.

<u>Proof</u>: Let $\mathbf{z} \in \mathbb{R}$ be arbitrary. We have to show that the set

$$A = \{ u \in P \mid f_{T}(u) \neq a \}$$

is closed. Let $u \in cl \ A$ and let $\{u_n\} \subset A$ be a sequence such that $u_n \longrightarrow u$. For each $n=1,2,\ldots$, we find $w_n \in T(u_n)$ such that

$$\mathbf{f}_{\mathbf{T}}(\mathbf{u}_{\mathbf{n}}) \leq \| \mathbf{w}_{\mathbf{n}} \| < \mathbf{f}_{\mathbf{T}}(\mathbf{u}_{\mathbf{n}}) + 1/n.$$

Thus

(1.2)
$$\| w_n \| < a + 1/n, n = 1,2,...$$

and so the sequence $\{w_n\}$ is bounded, hence w*-praecompact. Therefore there is $w \in X^*$ and a subnet $\{w_n, \infty \in \Lambda\}$ of the sequence $\{w_n\}$ such that

$$\mathbf{w}_{\mathbf{n}_{\infty}} \longrightarrow \mathbf{w}(\Lambda).$$

And since $u_{n_{\infty}} \longrightarrow u(\Lambda)$, too, and T is demiclosed, $(u,w) \in T$. From the weak* lower semicontinuity $(w^*.l.s.c.$, in abbreviation) of the norm on X^* , by using (1.2) and (1.3), we have

$$\|\mathbf{w}\| \leq \lim_{\alpha \in \Lambda} \inf \|\mathbf{w}_{\mathbf{n}_{\infty}}\| \leq \mathbf{a}.$$

Thus $f_{\mathbf{T}}(u) \leq ||w|| \leq a$, i.e., $u \in A$. The closedness of A is proved, which completes the proof. Q.E.D.

We recall two well-known propositions.

<u>Proposition 1.1</u> ([5, 13.4]). If S: $P \rightarrow Q$ is a single-valued mapping from a metric space P to a metric space Q, then the set C(S) of all those points at which S is continuous, is G_{0} in D(S), i.e., the set NC(S) = D(S) \ C(S) is F_{0} in D(S).

<u>Proposition 1.2.</u> Let P be a metric space and $f: P \rightarrow R \cup \{+\infty\}$ a lower semicontinuous function. Then the set C(f) of all those points at which f is continuous, is residual in dom f, i.e., the set $NC(f) = \text{dom } f \setminus C(f)$ is of the first (Baire's) category in dom f.

Proof: See 14.7.6 and 14.5.2 in [5].

Lemma 1.2. Let T: $P \longrightarrow 2^{X^*}$ be a demiclosed multivalued mapping from a metric space P to a dual X^* of a normed linear space X. Let the function f_T be defined by (1.1).

Then the set $C(f_T)$ of all those points at which f_T is continuous, is residual G_{σ^-} in D(T).

<u>Proof</u>: It follows immediately from Lemma 1.1 and Propositions 1.1 and 1.2.

Let T: $P \longrightarrow 2^{X^*}$ be a multivalued mapping. A selection T_0 of T is said to be lower (with respect to the norm on X^*), if

$$(1.4) (u,w) \in T \Longrightarrow ||T_0(u)|| \not \in ||w||.$$

Obviously.

(1.5)
$$\|T_0(u)\| = f_T(u)$$
 for $u \in D(T)$.

We shall show that if T is demiclosed, then there exists

at least one lower selection of T. Let $u \in D(T)$ be arbitrary. Denote $c = \inf \{ ||w|| \mid w \in T(u) \}$ and set

$$K = \{ w \in T(u) \mid ||w|| \le c + 1 \}.$$

Then K is a nonempty bounded and w*-closed subset of X*, hence w*-compact. So the norm on X*, which is w*.l.s.c., attains its minimum on K, i.e., there is a $w_0 \in K \subset T(u)$ such that $\| w_0 \| = c$.

For every singlevalued mapping S: $P \longrightarrow X^*$, we introduce the sets

 $C^{d}(S) = \{u \in D(S) \mid S \text{ is demicontinuous at } u\},$ $DC^{d}(S) = D(S) \setminus C^{d}(S).$

Lemma 1.3. Let T: $P \longrightarrow 2^{X^*}$ be a demiclosed multivalued mapping from a metric space P to a dual X^* of a normed linear space X, f_T the function defined by (1.1). Let there exist a unique lower selection T_0 of T.

Then, if $\mathbf{f}_{\mathbf{T}}$ is continuous at $\mathbf{u} \in D(\mathbf{T})$, $\mathbf{T}_{\mathbf{0}}$ is demicontinuous at \mathbf{u} :

(1.6)
$$C(f_T) \subset C^d(T_o)$$
, i.e., $NC^d(T_o) \subset NC(f_T)$

and hence, the set $C^{d}(T_{0})$ is residual in D(T).

<u>Proof</u>: Let $u \in C(f_T)$ be arbitrary. Let $\{u_n\}$ be a sequence in D(T) such that $u_n \longrightarrow u$. Since (1.5) holds and $u \in C(f_T)$,

(1.7)
$$\| \mathbf{T}_{\mathbf{0}}(\mathbf{u}_{\mathbf{n}}) \| \longrightarrow \| \mathbf{T}_{\mathbf{0}}(\mathbf{u}) \| ,$$

hence, the sequence $\{T_0(u_n)\}$ is bounded. It implies that from any subsequence of $\{T_0(u_n)\}$, we can extract a subnet converging weakly* to some $w \in X^*$. Then the demiclosedness

of T gives that $(u,w) \in T$, hence, by (1.4), $\|w\| \ge \|T_0(u)\|$. But w^* .l.s.c. of the norm on X^* , and (1.7) implies $\|w\| \le \| \|T_0(u)\| \|$. Thus $\|w\| = \|T_0(u)\| \|$. From here, and from the uniqueness of the lower selection of T, we obtain $w = T_0(u)$. It means that the whole sequence $\{T_0(u_n)\}$ is converging weakly $\{T_0(u), T_0(u), T_0($

Corollary 1.1. Let S: $P \longrightarrow X^*$ be a demiclosed single-valued mapping from a metric space P to a dual X^* of a normed linear space X.

Then the set $C^{\tilde{\mathbf{d}}}(S)$ of all those points at which S is demicontinuous, is residual in D(S).

Lemma 1.4. Let P be a metric space and X a normed linear space whose dual X^* has the property (H). Let T: P \longrightarrow 2^{X^*} be a demiclosed multivalued mapping and let there exist a unique lower selection T_0 of T. Let f_T be the function defined by (1.1).

Then T $_{0}$ is continuous at $u \in D(T)$ iff f $_{T}$ is continuous at u:

(1.8)
$$C(T_0) = C(f_T), i.e., NC(T_0) = NC(f_T)$$

and hence, the set $C(T_0)$ is residual $G_{\rho'}$ in D(T).

<u>Proof</u>: Since X^* has the property (H), for every $w \in X^*$ and for every sequence $\{w_n\} \subset X^*$, he following equivalence holds

$$(1.9) \hspace{1cm} w_n \longrightarrow w \Longleftrightarrow (w_n \longrightarrow w \text{ and } \| w_n \| \longrightarrow \| w \|).$$

Let $u \in D(T)$ and let $\{u_n\}$ be a sequence in D(T) such that $u_n \longrightarrow u$. If we set $w = T_o(u)$ and $w_n = T_o(u_n)$, $n = 1, 2, \ldots$ in (1.9), we obtain

$$\begin{split} \mathbf{T}_{o}(\mathbf{u}_{n}) &\longrightarrow \mathbf{T}_{o}(\mathbf{u}) \Longleftrightarrow (\mathbf{T}_{o}(\mathbf{u}_{n}) \longrightarrow \mathbf{T}_{o}(\mathbf{u}) \text{ and } \| \mathbf{T}_{o}(\mathbf{u}_{n}) \| \longrightarrow \\ &\longrightarrow \| \mathbf{T}_{o}(\mathbf{u}) \| \;). \end{split}$$

Therefore (see (1.5)),

$$C(T_0) = C(f_T) \cap C^{d}(T_0).$$

But, by Lemma 1.3, we have $C(f_T) \subset C^d(T_0)$, thus (1.8) holds. The rest of the conclusion of the Lemma follows from the identity (1.8) by Lemma 1.2. Q.E.D.

Corollary 1.2. Let P be a metric space, X a normed linear space whose dual X^* has the property (H). Let S: P $\longrightarrow X^*$ be a demiclosed single-valued mapping.

Then the set C(S) of all those points at which S is continuous, is residual G_{σ^*} in D(S).

Corollary 1.3. Let S: $P \longrightarrow X$ be a demiclosed single-valued mapping from a metric space P to a reflexive Banach space X. Then the set C(S) of all those points at which S is continuous, is residual $G_{\mathcal{O}}$ in D(S).

<u>Proof</u>: It follows immediately from the renorming statement of Troyanski [20] by Corollary 1.2, where we write X* instead of X.

It should be noted that, in the book of Alexiewicz [1, V.2.1.], there is a similar statement for X separable:

Let S: $P \longrightarrow X$ be a singlevalued mapping (with D(S) = P) from a complete metric space P to a separable normed

linear space X such that

$$u_n \longrightarrow w \Longrightarrow \langle x^*, S(u_n) \rangle \longrightarrow \langle x^*, S(u) \rangle$$
 for every

where Z^* is such a subset of X^* that for every $x \in X$,

$$\|x\| = \sup \{\langle x^*, x \rangle \mid x^* \in Z^*, \|x^*\| \leq 1\}.$$

Then the set NC(S) of all those points at which S is not continuous, is of the first category in P.

If S: Y \longrightarrow X is a singlevalued linear closed (i.e., $y_n \longrightarrow y$ and $S(y_n) \longrightarrow x$ imply $y \in D(S)$ and x = S(y)) mapping from a normed linear space Y to a reflexive Banach space X, with D(S) of the second category in itself, we receive from Corollary 1.3 with help of Mazur's theorem that S is continuous, which is a special case of Banach's closed graph theorem.

§ 2. Theorems on singlevaluedness and (strong) upper semicontinuity of maximal monotone mappings

We start by the following simple lemma:

Lemma 2.1. A maximal monotone multivalued mapping T: $: X \longrightarrow 2^{X^*}$ from a normed linear space X to its dual X^* is demiclosed and has at least one lower selection.

If, in addition, X^* is strictly convex, there is a unique lower selection $T_{\scriptscriptstyle O}$ of $T_{\scriptscriptstyle \bullet}$

<u>Proof</u>: Let $\{(x_{\infty}, w_{\infty}), \infty \in \Lambda\}$ be aret in T such that

$$x_{\alpha} \longrightarrow x(\Lambda), w_{\alpha} \longrightarrow w(\Lambda), \sup \{\|w_{\alpha}\| \mid \alpha \in \Lambda\} < +\infty$$
.

Let $(y,y^*) \in T$ be arbitrary. From the monotonicity of T, we have

$$\langle w_x - y^*, x_x - y \rangle \ge 0$$
 for all $\infty \in \Lambda$,

and passing to a limit, we get $\langle w - y^*, x - y \rangle \ge 0$. Since $(y,y^*) \le T$ was arbitrary, the maximal monotonicity of T gives $(x,w) \in T$. Thus the demiclosedness of T is proved and therefore T has at least one lower selection.

Further, let X^* be strictly convex. Suppose that for some $x \in D(T)$, there are $w, z \in T(x)$ such that $\| w \| = \| z \| =$ = $c = \inf \{ \| x^* \| \mid x^* \in T(x) \}$. Then the convexity of T(x) (see, e.g., [4]) gives $(w + z)/2 \in T(x)$, hence $\| (w + z)/2 \| \ge$ c. But, on the other hand, $\| (w + z)/2 \| \le c/2 + c/2 = c$. Thus the strict convexity of X^* yields w = z. Hence, two different lower selections of T cannot exist. Q.E.D.

Let M be a nonempty subset of a normed linear space X. Following Kato [9], we introduce the set

(2.1)
$$dint M = \{x \in M | cl F_{v}(M) = X\},$$

where

(2.2)
$$F_{\mathbf{x}}(\mathbf{M}) = \{ \mathbf{u} \in \mathbf{X} \mid \exists \{ \mathbf{t}_n \} \subset \mathbb{R}, \mathbf{t}_n > 0, \mathbf{t}_n \downarrow 0, \{ \mathbf{x} + \mathbf{t}_n \mathbf{u} \} \subset \mathbf{M} \}.$$

It should be noted that int M and the algebraic interior of M even are included in dint M.

Example 2.1. Let H be a separable Hilbert space, ie; } a total orthonormal system in H. We set

It is easy to show that the set M is convex closed (hence, of the second category in itself) having empty algebraic interior, but dint $M \neq \emptyset$, even M = c1 (dint M).

<u>Lemma 2.2</u>. Let T: $X \longrightarrow 2^{X^*}$ be a monotone multivalued mapping from a normed linear space X to its dual X^* and let T_1 be an arbitrary selection of T. Denote

 $SV(T) = \{x \in D(T) \mid T(x) \text{ is a singleton } \},$ $MV(T) = D(T) \setminus SV(T).$

Then, if T_1 is demicontinuous at $x \in dint D(T)$, the set T(x) is a singleton:

(2.4) $C^{d}(T_{1}) \cap dint D(T) \subset SV(T)$, i.e., $MV(T) \cap dint D(T) \subset RC^{d}(T_{1})$.

<u>Proof</u>: Let $x \in C^d(T_1) \cap dint D(T)$. Let w be an arbitrary element of the set T(x). For every $u \in F_x(D(T))$ and the corresponding sequence $\{t_n\}$, $t_n > 0$, $t_n \downarrow 0$ (see (2.1) and (2.2)), from the monotonicity of T, we have

 $\langle T_1(x + t_n u) - w, (x + t_n u) - x \rangle \ge 0, n = 1,2,...,$

and cancelling it by tn > 0,

$$\langle T_1(x + t_n u) - w, u \rangle \ge 0, n = 1, 2, ...$$

Using the demicontinuity (even the hemicontinuity only) of T, we then obtain that

$$\langle T_1(x) - w, u \rangle \ge 0.$$

Since this inequality holds for each $u \in F_{\mathbf{X}}(D(T))$, and $F_{\mathbf{X}}(D(T))$ is a dense subset in X, it must be $T_1(x) = w$. But

w was arbitrary element of the set T(x), hence T(x) is a singleton, i.e., $x \in SV(T)$. Thus the lemma is proved. Q.E.D.

Remark 2.1. If T: $X \longrightarrow 2^{X^*}$ is a maximal monotone multivalued mapping from a Banach space X to X^* , with int $D(T) \neq \emptyset$, (2.4) can be strengthened. The result of Rockafellar [18] says that $SV(T) \subset I$ int D(T) and that T is locally bounded at any point of int D(T). From this and from (2.4), we can derive the following identity

$$C^{d}(T_1) \cap int D(T) = SV(T).$$

Theorem 2.1. Let X be a Banach space with a strictly convex dual X^* and T: $X \rightarrow 2^{X^*}$ a maximal monotone multivalued mapping.

Then the set

 $MV(T) \cap dint D(T) = \{x \in dint D(T) \mid T(x) \text{ is not a singleton}\}$ is of the first category in D(T).

If, moreover, int $D(T) \neq \emptyset$, then the set $SV(T) \cap ID(T) = \{x \in ID(T) \mid T(x) \text{ is a singleton } \}$ is dense residual in int D(T).

<u>Proof</u>: The first assertion follows immediately from Lemmas 2.2 and 1.3.

Further, let int $D(T) \neq \emptyset$. Since the obvious inclusion int $D(T) \subset \text{dint } D(T)$ holds, the set $MV(T) \cap \text{int } D(T)$ is of the first category in D(T), hence also in X and in the open non-empty set int D(T). Therefore the set

 $SV(T) \cap int D(T) = int D(T) \setminus (MV(T) \cap int D(T))$

is residual in int D(T) and, by Baire's category theorem, is dense in int D(T). Q.E.D.

Remark 2.2. Since $SV(T) \subset Int D(T)$ (see [18]), we can write SV(T) instead of $SV(T) \cap Int D(T)$ in Theorem 2.1.

Theorem 2.2. Let X be a Banach space with a dual X^* which is strictly convex and has the property (H). Let T: $: X \longrightarrow 2^{X^*}$ be a maximal monotone multivalued mapping. Then:

- (i) There exists a unique lower selection T_0 of T.
- (ii) For each $x \in \text{dint } D(T)$ at which T_0 is continuous, T(x) is a singleton.
- (iii) The set $C(T_0)$ of all those points at which T_0 is continuous, is residual G_0 in D(T), i.e., the set $NC(T_0) = D(T) \setminus C(T_0)$ is of the first category F_0 in D(T).

 (iv) If, in addition, int $D(T) \neq \emptyset$, the set $C(T_0)$ int D(T)
- (iv) If, in addition, int $D(T) \neq \emptyset$, the set $C(T_0) \cap$ int D(T) is dense residual G_{σ} in int D(T).

<u>Proof:</u> (i) is contained in Lemma 2.1.(ii) follows from Lemma 2.2 and the obvious inclusion $C(T_0) \subset C^d(T_0)$. (iii) is obtained by using (i) and Lemma 1.4. (iv) follows from (iii) and Paire's category theorem. Q.E.D.

Example 2.2. Let H be a separable Hilbert space, $\{e_i\}$ a total orthonormal system in H and McH the set defined by (2.3). Define the function $\varphi: H \longrightarrow RU\{+\infty\}$ as follows

 $\varphi(x) = 0$, if $x \in M$, $\varphi(x) = +\infty$, if $x \notin M$.

Obviously, φ is a convex lower semicontinuous function. By [19], the subdifferential $\partial \varphi$ of φ is a maximal monotone multivalued mapping from H to H, with $D(\partial \varphi) = M$. Hen-

ce, according to Example 2.1, int $D(\partial \varphi) = \emptyset$, but dint $D(\partial \varphi) \neq \emptyset$, and cl (dint $D(\partial \varphi)) = D(\partial \varphi)$ is of the second category in itself. It justifies the extension of our reasoning from the class of maximal monotone mappings T, with int $D(T) \neq \emptyset$, to that, with dint $D(T) \neq \emptyset$.

If int $D(T) \neq \emptyset$, then for the points $x \in C(T_0) \cap int D(T)$, we shall derive a little more still, namely, that at such points x, the mapping T is (strongly) upper semicontinuous. We shall use the following lemma.

Lemma 2.3. Let $T: X \longrightarrow 2^{X^*}$ be a monotone multivalued mapping from a normed linear space X to its dual X^* such that int $D(T) \neq \emptyset$ and let T_1 , T_2 be two arbitrary selections of T. Denote by $C(T_1)$, $C(T_2)$ the sets of all those points at which T_1 , T_2 are continuous, respectively. Then

(2.5)
$$C(T_1) \cap int D(T) = C(T_2) \cap int D(T)$$
.

<u>Proof</u>: In view of the symmetry of the conclusion, it suffices to prove the inclusion c in (2.5). Let $x \in C(T_1) \cap C$ int D(T) be arbitrary. Recall that, by Lemma 2.2, $T_1(x) = T_2(x) = T(x)$. Let $\{x_n\} \subset D(T)$ be a sequence such that $x_n \to x$. Since $x \in Int D(T)$, we can suppose that $\{x_n\} \subset C$ int D(T). For each $n = 1, 2, \ldots$, we find $v_n \in X$ so that

(2.6)
$$\| \mathbf{v}_n \| \le 1$$
 and $\| \mathbf{T}_2(\mathbf{x}_n) - \mathbf{T}(\mathbf{x}) \| - 1/n \le$ $\le \langle \mathbf{T}_2(\mathbf{x}_n) - \mathbf{T}(\mathbf{x}), \mathbf{v}_n \rangle$.

Further, for every n = 1, 2, ..., we choose $t_n \in (0, 1/n)$ so that $x_n + t_n v_n \in D(T)$.

The monotonicity of T gives

 $\langle \mathbf{T}_1(\mathbf{x}_n + \mathbf{t}_n \mathbf{v}_n) - \mathbf{T}_2(\mathbf{x}_n), (\mathbf{x}_n + \mathbf{t}_n \mathbf{v}_n) - \mathbf{x}_n \rangle \ge 0,$ hence

$$\langle \mathbf{T}_{2}(\mathbf{x}_{n}), \mathbf{v}_{n} \rangle \leq \langle \mathbf{T}_{1}(\mathbf{x}_{n} + \mathbf{t}_{n}\mathbf{v}_{n}), \mathbf{v}_{n} \rangle$$
,

which together with (2.6) yields

$$\begin{split} \parallel \mathbf{T}_{2}(\mathbf{x}_{n}) - \mathbf{T}(\mathbf{x}) \parallel - \mathbf{1}/\mathbf{n} & \leq \langle \mathbf{T}_{1}(\mathbf{x}_{n} + \mathbf{t}_{n}\mathbf{v}_{n}) - \mathbf{T}(\mathbf{x}), \mathbf{v}_{n} \rangle \leq \\ & \leq \parallel \mathbf{T}_{1}(\mathbf{x}_{n} + \mathbf{t}_{n}\mathbf{v}_{n}) - \mathbf{T}(\mathbf{x}) \parallel . \end{split}$$

But $x_n + t_n v_n \longrightarrow x$ and $x \in C(T_1)$. Therefore the last inequality gives that $||T_2(x_n) - T(x)|| \longrightarrow 0$, i.e., $x \in C(T_2)$.

Theorem 2.3. Let X be a Banach space with a dual X* which is strictly convex and has the property (H). Let T: $: X \longrightarrow 2^{X^*}$ be a maximal monotone multivalued mapping with int $D(T) + \emptyset$.

Then the set of all those $x \in \operatorname{int} D(T)$ for which the set T(x) is a singleton and T is upper semicontinuous at x, i.e., given $\varepsilon > 0$, there exists $\sigma' > 0$ such that for each $u \in D(T)$ fulfilling $\|x - u\| < \sigma'$, the set T(u) is included in the ε -neighbourhood of T(x), is dense residual $G_{\sigma'}$ in int D(T).

Proof: We set

$$C = int D(T) \cap C(T_1),$$

where T_1 is an arbitrary selection of T. (Thanks to Lemma 2.3, the set C does not depend on the choice of T_1 .) By Theorem 2.2 (iv), C is dense residual $G_{\sigma'}$ in int D(T). We shall show that C is that set of Theorem 2.3. Let $x \in \text{int D}(T)$ be

such that T(x) is a singleton and T is upper semicontinuous at x. Then we easily get $x \in C(T)$, hence $x \in C$. Conversely, let $x \in C$ be arbitrary. By Lemma 2.2, the set T(x) is a singleton. We shall be proving that T is upper semicontinuous at x. Let us suppose the contrary. Then there exists an x > 0 and a sequence $\{(u_n, w_n)\} \subset T$ such that $u_n \to x$ and

(2.7)
$$\| \mathbf{w}_n - \mathbf{T}(\mathbf{x}) \| \ge \varepsilon$$
, $n = 1, 2, ...$

We define the selection T_2 of T as follows:

$$T_2(u_n) = w_n, n = 1, 2, ...,$$

 $T_2(u) = an arbitrary element of <math>T(u)$, for $u \notin \{u_n\}$.

But since, by Lemma 2.3, $x \in C \subset C(T_2)$,

$$w_n = T_2(u_n) \longrightarrow T_2(x) = T(x),$$

which is in contradiction with (2.7). It means T is upper semicontinuous at x. Q.E.D.

Remark 2.3. The second part of Theorem 2.1, and Theorem 2.3 are valid for arbitrary monotone multivalued mapping T: $X \longrightarrow 2^{X^*}$, with int $D(T) \neq \emptyset$.

Remark 2.4. Let T: $X \rightarrow 2^{X^*}$ be a maximal monotone multivalued mapping from a Banach space X to its dual X^* such that int $D(T) \neq \emptyset$. Then, by Rockafellar's result [18], $D(T) \subset cl$ (int D(T)), and hence, the set $D(T) \setminus int$ D(T) is nowhere dense in D(T). Therefore the text "in int D(T)" in Theorems 2.1 - 2.3 can be replaced by "in D(T)" (provided that T is maximal monotone).

Remark 2.5. A somewhat different method for obtaining the results above, in the special case when X is reflexive, is given in [6].

Remark 2.6. Let $f: X \longrightarrow RU\{+\infty\}$ be a convex lower semicontinuous function, with D(f) = X and int $(\text{don } f) \neq \emptyset$. Then, it can be easily seen that the subdifferential ∂f of f is a monotone multivalued mapping. Using [14], we immediately derive from Theorem 2.1 and Remark 2.3 that if X^* is strictly convex, then the set of those points at which f is Gâteaux differentiable, is dense residual in int (dom f), which is included in Theorem 2 in [3]. It follows from Theorem 2.3 and Remark 2.3 by means of Proposition (ii) in [17] that if X^* is strictly convex and has the property (H), then the set of those points at which f is Fréchet differentiable, is dense residual G_{d} in int (dom f). This result is a little stronger than Theorem 1 in [3], where it is required for X^* to be locally uniformly convex. However, our statement is included in [15].

Added in proof. After this paper had been prepared for publication, the author received the preprint by P. Kenderov and R. Robert: Nouveaux résultats génériques sur les opérateurs monotones dans les espaces de Banach, which will appear in C.R. Acad. Sci. Paris. Here it is independently shown that the conclusion of Theorem B is valid, if X* has the property (H), where nets are taken instead of sequences, without the assumption of strict convexity of X*.

From the sketch of the proofs in the quoted work, it is obvious that our methods of the proofs are rather different.

References

- [1] A. ALEXIEWICZ: Analiza funkcjonalna, Warszawa, 1969.
- [2] D. AMIR, J. LINDENSTRAUSS: The structure of weakly compact sets in Banach spaces, Annals of Mathematics 88(1968), 35-46.
- [3] E. ASPLUND: Fréchet differentiability of convex functions, Acta Math. 121(1968), 31-47.
- [4] F.E. BROWDER: Problèmes non linéaires, Les presses de l'Université de Montréal, 1966.
- [5] E. ČECH: Point sets, Academia, Prague, 1969.
- [6] M. FABIAN: On strong continuity of monotone mappings in reflexive Banach spaces, to appear in Acta Polytechnica 1977.
- [7] K. JOHN, V. ZIZIER: A renorming of dual spaces, Israel J. Math. 12(1972), 331-336.
- [8] K. JOHN, V. ZIZIER: A note on renorming of dual spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21(1973), 47-50.
- [9] T. KATO: Demi-continuity, hemi-continuity, and monotonicity, Bull. Amer. Math. Soc. 70(1964), 548-550.
- [10] P.S. KENDEROV: The set-valued monotone mappings are almost everywhere singlevalued, Comptes rendus de l'Académie Bulgare des Sciences 27(1974), 1173-1175.
- [11] P.S. KENDEROV: A note on multivalued monotone mappings,

 Comptes rendus de l'Académie Bulgare des Sciences 28(1975), 583-584.
- [12] P.S. KENDEROV: Semicontinuity of set-valued monotone mappings, Fundamenta Mathematica 88(1975), 61-69.
- [13] N. KENMOCHI: Accretive mappings in Banach spaces, Hiroshima Math. Journal 2(1972), 163-177.
- [14] J.J. MOREAU: Fonctionnelles sous-differentiables, Comptes rendus Acad. Sci. Paris 257(1963),4117-4119.

- [15] I. NAMIOKA, R.R. PHELPS: Barach spaces which are Asplund spaces, Duke Math. J. 42(1975), 735-750.
- [16] R. ROBERT: Points de continuité de multi-applications semi-continues supérieurement, Comptes rendus Acad. Sci. Paris 278(1974), 413-415.
- [17] R. ROBERT: Une généralisation aux opérateurs monotones des théorèmes de differentiabilité d'Asplund, Analyse convexe et ses applications,
 Lecture Notes in Economics and Mathematical
 System 102, 168-179.
- [18] R.T. ROCKAFELLAR: Local boundedness of nonlinear monotone operators, Michigan Math. J. 16(1969), 397-407.
- [19] R.T. ROCKAFELIAR: On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
- [20] S.L. TROYANSKI: On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Mathematica 37(1971), 173-180.
- [21] E.H. ZARANTONELLO: Dense Single-valuedness of Monotone Operators, Israel J. Math. 15(1973), 158-166.

Ústav výpočtové techniky ČVUT Horská 3, 12800 Praha 2 Československe

(Oblatum 4.5. 1976)

