

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log66

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,4 (1977)

TOLERANCE RELATIONS ON COMPLETE LATTICES Juhani NIEMINEN, Vassa

Abstract: It is shown that each compatible tolerance relation T on a complete lattice L has a homotopy representation by means of two semicongruences induced by T on L.

Key words: Tolerance, homotopy representation.

AMS: 06A23 Ref. Z.: 2.724.38

The purpose of this short paper is to show that each compatible tolerance relation on a complete lattice has the property of the homotopy type, i.e. a compatible tolerance relation T on a complete lattice L can be decomposed into two semicongruences on L and, on the other hand, expressed by means of these two semicongruences. The concept of homotopy suitable for the approach here was introduced by Petrescu in [4]. The other observations of this note are based on the characterization of compatible tolerance relations by means of α -coverings and related mappings given by Chajda, Niederle and Zelinka in [1]. For other properties of tolerance relations on algebras the reader is referred to the recent paper [3] of Chajda and Zelinka and to the references therein.

Let $\mathcal{A} = \langle A, F \rangle$ be an algebra with the support A and

the set F of fundamental operations. A tolerance relation T on the set A is a binary, reflexive and symmetric relation on A. T is compatible with $\mathcal A$, if for any n-ary operation feF, where n is a positive integer, and for arbitrary elements $a_1, \dots, a_n, b_1, \dots, b_n$ of satisfying $a_i T b_i$ for $i = 1, \dots, n$, we have $f(a_1, \dots, a_n) T f(b_1, \dots, b_n)$.

Let M be a non-empty set. The family $\mathcal{M} = \{M_{\gamma}, \gamma \in \Gamma\}$, where Γ is a subscript set, is called a covering of M by subsets, if and only if M_{γ} is for each $\gamma \in \Gamma$ a subset of M and $\bigcup_{\gamma} \{M_{\gamma} \mid \gamma \in \Gamma\} = M$. As usually, we suppose that $M_{\gamma} = M_{\beta}$ for $\gamma = \beta$, γ , $\beta \in \Gamma$. A covering $\mathcal{M} = \{M_{\gamma}, \gamma \in \Gamma\}$ of M is called a γ -covering of M, if and only if γ satisfies the following two conditions

(i) if $\gamma \in \Gamma$ and $\gamma \in \Gamma$, then $\gamma \in \Gamma \in \Gamma$ and $\gamma \in \Gamma \in \Gamma$, then $\gamma \in \Gamma \in \Gamma \in \Gamma$ and $\gamma \in \Gamma \in \Gamma$, then $\gamma \in \Gamma \in \Gamma \in \Gamma$, $\gamma \in \Gamma \in \Gamma \in \Gamma$.

(ii) if N≤M and N is not contained in any set from M, then N contains a two-element subset of the same property. The following lemma shows the connection between tolerance relations on M and τ-coverings of M[1, Thm. 1].

Lemma 1. Let M be a non-empty set. There exists then a one-to-one correspondence between tolerance relations on M and τ -coverings of M such that if T is a tolerance relation on M and \mathcal{M}_T is the τ -covering of M corresponding to T, then any two elements of M are in the relation T if and only if there exists a set from \mathcal{M}_T which contains both of them.

The second lemma [1, Thm. 3] illuminates the properties of compatible tolerances on algebras.

- Lemma 2. Let $\mathcal{A}=\langle A,F\rangle$ be an algebra, T a tolerance on \mathcal{A} and \mathcal{M}_T a τ -covering of A corresponding to T. The tolerance T is compatible with \mathcal{A} , if and only if there exists an algebra $\mathcal{B}=\langle B,G\rangle$ with the following properties:
- (i) there exists a one-to-one mapping $\varphi: F \longrightarrow G$ such that for any positive integer n and for each $f \in F$ the operation φf is n-ary if and only if f is n-ary;
- (ii) there exists a one-to-one mapping $\chi:\mathcal{M}_{T} \longrightarrow B$ such that for each n-ary operation $f \in F$ and for any n+1 elements $M_{0}, M_{1}, \ldots, M_{n}$ from \mathcal{M}_{T} the equality $\varphi f(\chi(M_{1}), \ldots, \chi(M_{n})) = \chi(M_{0})$ implies that for any n elements a_{1}, \ldots, a_{n} of A such that $a_{i} \in M_{i}$, $i = 1, \ldots, n$, the element $f(a_{1}, \ldots, a_{n}) \in M_{0}$.

Let $\mathcal{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ and $\mathcal{B} = \langle \mathbf{B}, \mathbf{G} \rangle$ be two algebras of the same type. Let \mathbf{n}_0 be the maximum number \mathbf{n} for which there exists an n-ary operation \mathbf{f} on \mathcal{A} and \mathbf{I} the interval $[1, \mathbf{n}_0]$. A family $\mathbf{f} = [(\alpha_i)_{i \in I}; \mathcal{B}]$ of mappings of \mathbf{A} into \mathbf{B} such that $(\mathbf{G}(\mathbf{f}(\mathbf{a}_1, \ldots, \mathbf{a}_n))) = \mathbf{f}(\alpha_1(\mathbf{a}_1), \ldots, \alpha_n(\mathbf{a}_n))$ for every $\mathbf{n} \neq \mathbf{n}_0$, $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbf{A}$, is called a homotopy of \mathcal{A} into \mathcal{B} . The mappings α_i are called components of homotopy \mathbf{f} and \mathcal{B} the principal component of \mathbf{f} . Moreover, it is shown that each α_i induces an equivalence relation on \mathbf{A} [4, Lemma 0.1].

We shall show that the mapping χ relating to a compatible tolerance T on L is a principal component of a homotopy induced by T. The components \propto_1 and \propto_2 are generated by semicongruences on L which are induced by the χ -covering \mathcal{M}_T of T. We shall construct \propto_1 which is given by an equivalence relation $E(\propto_1)$ being compatible with respect to the

 \wedge -operation on L, i.e. by a \wedge -semicongruence. The equivalence relation $\mathbb{E}(\alpha_1)$ is constructed by determining the partition \mathbb{E} inducing $\mathbb{E}(\alpha_1)$. \mathbb{E} is obtained by modifying the \mathbb{C} -covering $\mathcal{M}_{\mathbb{T}}$ of the compatible tolerance T on L.

Theorem 1. Let T be a compatible tolerance on a complete lattice L, \mathcal{M}_{T} the τ -covering corresponding to T and let $\mathbf{M}_{\sigma} \in \mathcal{M}_{T}$. Then the family of sets $\mathcal{M}_{T}^{\wedge} = \{ \mathbf{M}_{\sigma}^{\wedge}, \sigma \in \Gamma \}$, where $\mathbf{M}_{\sigma}^{\wedge} = \mathbf{M}_{\sigma}^{\wedge} \setminus \mathcal{O}_{T}^{\wedge} = \{ \mathbf{M}_{\sigma}^{\wedge}, \sigma \in \Gamma \}$, the least element $\mathbf{e}_{1\sigma}^{\wedge}$ of $\mathbf{M}_{\sigma}^{\wedge} = \mathbf{M}_{\sigma}^{\wedge} \setminus \mathcal{O}_{T}^{\wedge} = \{ \mathbf{M}_{\sigma}^{\wedge} \mid \mathbf{M}_{\sigma}^{\wedge} \in \Gamma \}$, forms a partition of L determining a \wedge -semicongruence on L.

<u>Proof.</u> According to [2, Thm. 1], each $M_{\gamma} \in \mathcal{M}_{T}$ is a conves sublattice of L, and as L is complete, there are in M_{γ} the least and greatest elements $e_{1\gamma}$ and $e_{g\gamma}$, respectively.

According to the definition of $M_{\mathcal{O}}$, each $M_{\mathcal{O}}$ contains at least $e_{1\mathcal{O}}$, whence $M_{\mathcal{O}} \neq \emptyset$ for each $\mathcal{O} \in \Gamma$. Moreover, the properties of T imply that when a, be $M_{\mathcal{O}}$ then also as be $\in M_{\mathcal{O}}$. Thus the theorem holds, if we can show that any element $x \in L$ belongs to at least one set $M_{\mathcal{O}}$ of M_{T}^{Λ} , and $M_{\mathcal{O}} \cap M_{\mathcal{O}}^{\Lambda} = \emptyset$ for each pair \mathcal{O} , $\gamma \in \Gamma$ when $\mathcal{O} \neq \gamma$.

Let $a \in L$ and $\mathcal{M}_{T}(a)$ be the family of all subsets of \mathcal{M}_{T} containing the element a. Let $M_{\mathcal{T}}, M_{\mathcal{H}} \in \mathcal{M}_{T}(a)$ be such sets that $e_{1\mathcal{T}}$ and $e_{1\mathcal{H}}$ are non-comparable. Let q be the least element of the set $M_{\mathcal{T}} \cap M_{\mathcal{H}}$; such an element q exists and $q \in M_{\mathcal{T}} \cap M_{\mathcal{H}}$, since L is complete and as an intersection of two convex sets $M_{\mathcal{T}} \cap M_{\mathcal{H}}$ is a convex set of L, too. As $q \in M_{\mathcal{T}}$, $M_{\mathcal{H}}$, $q \geq e_{1\mathcal{T}} \vee e_{1\mathcal{H}}$ and as $e_{1\mathcal{T}} \vee e_{1\mathcal{H}} \in M_{\mathcal{T}} \cap M_{\mathcal{H}}$,

q = e₁₇ v e₁₂, whence q = e₁₇ v e₁₂. According to the compatibility of T, any two elements of the interval [e₁₇ v e₁₂₆, e_{g7} v e_{g26}] are in the relation T. Thus $[e_{1}, e_{2}, e_{3}] \subseteq \mathbb{M}_{A} \in \mathcal{M}_{T}(a)$ for some index $\mathcal{A} \in \Gamma$. If $e_{1\lambda} \leq e_{1\gamma}$, then $M_{\gamma} \notin \mathcal{M}_{T}$ according to the condition (i) for $\mathcal{M}_{\mathbf{T}}$; the same holds for $\mathbf{M}_{\mathbf{Z}}$, too. If $\mathbf{e}_{1\mathbf{Z}}$ and $e_{1\lambda}$ are non-comparable, then $(e_{1\gamma} \wedge e_{1\lambda})^{Te}g_{\gamma}$, as $e_{g\gamma} \in M_{\gamma}$, M_{λ} . Then $e_{1\gamma} > e_{1\gamma} \wedge e_{1\lambda}$, and so there were in $\mathcal{M}_{\mathbf{T}}$ a set containing properly My, which is a contradiction. Hence e_{17} , $e_{126} \leq e_{12} \leq e_{17} \vee e_{126}$ and so $e_{12} = e_{17} \vee e_{126}$. Consequently, there is in $\mathcal{M}_{\mathbf{T}}(\mathbf{a})$ for any two sets $\mathbf{M}_{\mathcal{T}}$, $\mathbf{M}_{\mathcal{H}}$ a third set M_{λ} such that $e_{1\lambda} = e_{1\lambda} \lor e_{1\lambda}$. As L is complete, there is also an element Vale lae lae goes over all indices of the sets in $\mathcal{M}_{\mathbf{T}}(\mathbf{a})$? = $\mathbf{e}_{\mathbf{1}_{\mathbf{C}}}$, where $\mathbf{e}_{\mathbf{1}_{\mathbf{C}}}$ is the least element of a subset M belonging to the au -covering $\mathcal{M}_{\mathbf{T}}$ and containing the element a. According to the definitiom of M $_{\mbox{\scriptsize Q}}^{\mbox{\scriptsize α}}$ and to the maximality of $e_{\mbox{\scriptsize q}}$ with respect to a, a ϵ M $_{\mathcal{O}}^{\wedge}$, and so any element of L belongs to at least one of the sets M_{x}^{\wedge} , $\gamma \in \Gamma$.

If $M_{\widehat{\mathcal{T}}} \cap M_{\widehat{\mathcal{T}}} \neq \emptyset$, $\gamma \neq \sigma$, then we can prove as above that $e_{1\sigma} \vee e_{1\gamma} \in M_{\widehat{\mathcal{T}}} \cap M_{\widehat{\mathcal{T}}}$. But this is the least element of a subset $M_{\mathcal{A}} \in \mathcal{M}_{T}$, $e_{1\lambda} > e_{1\sigma}$, $e_{1\gamma}$, and thus, according to the definitions of $M_{\widehat{\mathcal{T}}}$ and $M_{\widehat{\mathcal{T}}}$, $e_{1\lambda} \in M_{\widehat{\mathcal{T}}}$, $M_{\widehat{\mathcal{T}}} \in \mathbb{N}$. This is a contradiction, whence $M_{\widehat{\mathcal{T}}} \cap M_{\widehat{\mathcal{T}}} = \emptyset$ for any pair σ , $\gamma \in \Gamma$, $\sigma \neq \gamma$. This completes the proof.

Let T be a compatible tolerance on a complete lattice L and χ a mapping, $\chi:\mathcal{M}_{T}\longrightarrow B$, induced by T and defined in Lemma 2. As for any $\gamma\in\Gamma$ there exists a unique subset

 $\mathbf{M}_{\widehat{T}}^{\wedge} \in \mathcal{M}_{\widehat{T}}^{\wedge}$ of L, we can define a mapping $\infty_1 \colon L \longrightarrow \mathbf{B}$ as follows: for any $\mathbf{a} \in L$, $\infty_1(\mathbf{a}) = \chi(\mathbf{M}_{\widehat{T}})$ if and only if $\mathbf{a} \in \mathbf{M}_{\widehat{T}}^{\wedge}$ in $\mathcal{M}_{\widehat{T}}^{\wedge}$.

By using the dual proof of Theorem 1, we can show the existence of a partition \mathcal{M}_{T}^{\times} of L determining a \vee -semicongruence on L. As above, we define the mapping $\alpha_{2} \colon L \to B$ induced by \mathcal{M}_{T}^{\times} and $\chi \colon$ for any $a \in L$, $\alpha_{2}(a) = \chi(M_{T})$ if and only if $a \in M_{T}^{\times}$ in \mathcal{M}_{T}^{\times} . Now we are able to state our main theorem

Theorem 2. Let L be a complete lattice, T a compatible tolerance on L, \mathcal{M}_T the corresponding τ -covering of L and χ the mapping, $\chi: L \longrightarrow B$, induced by T, where B is the carrier set of the algebra $\mathfrak{B} = \langle B, G \rangle$ defined in Lemma 2. Then the triple $\xi = f \propto_1, \propto_2; \chi$ determines a homotopy of L into $\mathfrak{B} = \langle B, G \rangle$.

<u>Proof.</u> As χ is defined only on the family \mathcal{M}_T , we have to define χ on L such that it gives the desired homotopy property. For the two operations of L we define:

 $\chi(f(a_1,a_2))=\chi(M_0)$ which is obtained from $\varphi f(\chi(M_1),\chi(M_2))$, where $a_1\in M_1^{\wedge}$ and $a_2\in M_2^{\vee}$ (see Lemma 2 (ii)). As $a=a\vee a=a\wedge a$ in L, we obtain $\chi(a)=\chi(f(a,a))$ which is already defined. By using this definition for $\chi:L\to B$ it obviously holds that $\chi(f(a_1,a_2))=\varphi f(\alpha_1(a_1),\alpha_2(a_2))$ for any $a_1,a_2\in L$, where φf can be substituted by f as L and R are of the same type. This completes the proof.

References

[1] I. CHAJDA, J. NIEDERLE and B. ZELINKA: On existence con-

ditions for compatible tolerances, Czech. Math. J. 26(1976), 304-311.

- [2] I. CHAJDA and B. ZELINKA: Tolerance relations on lattices, Časop. pěst. mat. 99(1974), 394-399.
- [3] I. CHAJDA and B. ZELINKA: Lattices of tolerances, Časop. pěst. mat. 102(1977), 10-24.
- [4] A. PETRESCU: On the homotopy of universal algebras (I),
 Rev. Roum. Math. Pures et Appl. 22(1977),
 541-551.

Vaasa School of Economics
Inst. Math.
Raastuvankatu 31, 65100 Vaasa 10
Finland

(Oblatum 2.6. 1977)

