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ON LOGARITHMIC INFORMATION IN POINT PROCESSES

Petr MANDL, Praha

Abstract: Pairs P°,Pl of probability distributiong of
point processes are considered. The respective logarithmic
information is expressed in terms of the intensity (hazard
function) ratiol.Whence a aufficisnt condition for absolute
continuity of P with respect to P~ is obtained. The proofs
given require much simpler mathematical apparatus than the
derivation of similar results using general theory of point
processes.
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1. In this note a point process is a random sequence
of points {%,, n=1,2,...3 on the time axis (0,0). The
points can be interpreted as times of occurrence of an event,
€.g8., the failure of a machine. The intensity (or hazard func-
tion) at time t is a number Qt such that the probability of
an event. in the interval (t,t+dt) conditioned by all the past
equals Qtdt. We adopt the general approach to intensities as
presented in [2], Chapters 18 and 19, but without requiring
from the reader the knowledge of that book. For two point
processes we express the logarithmic information with aid of
the ratio of intensities. Then we obtain sufficient condi-
tions for the absolute continuity of their probability dis-

tributions. For the properties of information we refer to [1].
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2, The probability distribution of a point process
is a measure on the space (S, Yy, ). S is the set of all
non-decreasing sequences s = -{sl,sa,...} of positive num-
bers inclusively o with the following properties. i)
}Elnao 8, =00 , ii) 8n< 8p41» Whenever 8, < © ., We intro-
duce

Th(s) = 8pp n=1,2,.,,, Tol8) =0, s€s,

o
m§1 I{Snét} 3 te[O,oo), s€e S,

N, (s)

The counting process N provides a complete description of
the random point s, Thus, N.~s,

Next we define an increasing System of & -algebras

(1) ¥, = Sa{NUAt,ucEO,w)} , telo,001.

uAt is min(u,t). Definition (1) can be generalized. For

6 a stopping time with respect to ¥ we denote
3’6, = S'Q{Nu,\sa yuel0,00)% .
Let us recall the Galmarino Lemma on stopping times,

Lemma 1 (A.R, Galmarino), A non-negative random vari-

able 6 on (S,9) is a stopping time if ang only if for
telo,w), 8,8 s,

N,(s)

N.(s%), ust, 6(a)et = 6(8) = 6(s°),

Two consequences of Lemma 1 will be used in the sequel.
Lemma 2. Let 6 be a stopping time, 6&(s)~ 6(N.).
Then

(2) 6(N,) = 6(N.,g), ses.
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Proof., Take s€ S, Let s be such that N., g (8) =
N.(s"). Then N (s) = N (s"), u% 6(s). Hence, 6 (s) =

6(s”), which is the same as ( 2 ). O
Lemma 3 ([2])., Let 6 be a stopping time. Then
(3) AT, = 6'(N.,Wn_1)/\'en, n= 1,260
Proof. If 6 (N.)<®,, then from Lemma 1 folloya
6 (Nexx,_,) = 6(N.). Consequently, ( 3 ) holds. If &(N.)z

ZT,, then & (Near,_ ;)< v, is impossible, because this
would imply 6 (N,) = 6 (Mepvp, 7). Again, ( 3 ) holds. O

3. Let two probability measures P°,P1 be defined on

(8,9, ) by means of conditional distribution functions
(4) PO, FR(8/t)), 00 FE (48 eyt 1)yeen, 4 = 0,1
That is,
Fa(t/ %qpeen, ¥y ) = PRlegat/wg,een, v, ), telo,a),
n=1,2,...,i = 0,1,
We assume that functions ( 4 ) are continuous on [0,00).

We define on S cumulative intensities (or compensators)

: t A (w/eg,... )
5) al=al 4 [ T T1ern T

T RN VL T

)y Tho1#t <%
n-l)

n=1,2,.., Al

OEO.

The integrand on the right-hand side is a generalization of
the hazard function known from renewal theory.

Further we assume that
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1
an(t/tl,...,tn_l)

T
1-Fp (t/tg,eee,ty 1)

= ,e,,(t/tl,...,tn_l) .

0
. an(t/tl,...,tn__l)

= , telO,00).
1-Fp(t/ty 000,y 1)

0 £ £n< @ is the Radon-Nikodym density of the measures on
[0,00) specified by the differentials with the convention
0-00 = 0/0 = 0, Thus, it is possible to define the intensi-

ty ratio
(7 1, = ln(t/tl,...,cn_l), Tp1ft<wy, n=1,2,..,

We have

1 _ t )
Ay = fo L,dh0, tel0,m),

The mathematical expectation under P* will be denoted by EL,
Finally we introduce the information measure. Let &

be a stopping time. We denote by Ig (Pl,Po) the information

1

in P~ with respect to P° on Y o L.e., if P22 P° on %

and Z5, 1is the corresponding Radon-Nikodym density, then

1
Ig (B1,P°) = B°%4 log 24 = B log Zg , Zg = e
ap® hgg

1r P12 P° does not hold, then Ig(PLP°) = oo,

4. Next we give an auxiliary result. It concerns point
processes with at most one event. Let two probability distri-
butions on [0,00] have distribution functions F°,Fl, res-
pectively. Let Fo,Fl be continuous on L[0,:), F°(0) = 0 =

= FL(0). Define measures on [0,00) by the relation
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. i
(8) aa*(t) = 9—1’;&%—)-, tel0,0), i=0,1.

Further let

(9) aal(t) = £(t)aa(t), telo,),

where 0 £ £L(t)<c0 , tel0,o).
For the information we get the following formula,

Lemma 4.
t-
(10) I(FH,F0) = f""jo (1+ £ (u)log £ (u)- £ (u))da®(u)aF (t).
(o]

Proof. The integral in ( 10 ) exists, since

1+ xlogx-x20, xelO0,00). Consider first the case

Fl(oo-)< 1, F°(c0-) = 1. Then obviously I(Fl,Fo) = oo, Mo-
reover,

jw_l(u)dao(u) = fwzial(u)< © , fm_dao(u) = 00 .

0 0 0

The right-hand side of ( 10 ) is not less than

(1 - Fl(w—))( j:‘(l-e-l)dao(u) -f:-dal(u)) = 00 .

Hence, ( 10 ) holds.

For the rest of the proof we may assume
1 0
(11) F(o-)<1l=>F (0-)<1.

Set £(w) =1, From ( 8 7,( 9 ),( 11 ) follows that the den-
sity of P with respect to FO is

X
(12) d_Ft_ (t) = L#(t-lg(t), telo,o0]
aF 1 - Fo(t-)

Consequently,
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(13) 1(FL,F%) = f: log ( ﬁ%ﬁﬁ £ (t))aF(t).

The subsequent transformations lead from the right-hand
side of ( 10 ) to that of ( 13 ) and vice versa. Their feasi-

bility will be discussed afterwards.

£ v R wiog £(w)- £ (w)aa®wart(s) =

® F3F%(y) t ¥l (u) 1
—[,[-[, 1-F%(u) J.o 1-F1(u)J Sl

as + [ l0g £ LEW) g (u)ap(y) =
0 1-F"(u)

@ o 1 1 -
=j° (=10g(1-F"(t=))+ 1og(1-F'(t-))+log £(t))aF (t) =
= f”los(l“"lot" £ (t))aF (),
0 1-FO(t-)

We have used ( 12 ) and Fubini‘s Theorem.

Ir Fl(oo-)< 1, then from the finiteness of either the
left or the right-hand side of (1 ) follows the finiteness
of all integrals occurring in ( 14 )e Thus, for this case,

(10 ) is demonstrated. If Fl(co-) = 1, denote

t=inf{t: Fl(t) = 13,

Define for n = 1,2,...

ngl (s

F (t A (T-n"Da n), tel0,00), PFi(co) = 1,
i = 10,1,

Apply ( 10 ) to I(n?l,nl?o), and let n— o , From the con-
tinuity of information, ( 10 ) follows. O
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5. Theorem 1. Let 6 be a stopping time. Then
1 .0y _ ol (8- o
(15) Ig (P,P°) = E fo (1+Lylog Ly-Ly)dAJ.
Proof. Denote
K[x]l=1+ xlogx -x, xel0,m).

1l .0 x < p
Isnen(P7,P7) expressed with aid of Igaxy,_;(P7,P") amni of the
conditional information contained in the event at time °
'cnéb' equals

1l 50 1l o
IB’A‘tn(P P ) = IG'A‘En_l(P »P ) +

1 1 o
= Ve 2 Tn-11Tn-1<o} Tonen (P (. "5«'\"1"1) PGS rrn-1))*

a8, 81 + Ygnm, (PL(. 1< )
'/L{e'étfn_l} ’(,{e:z'n_l:m} Icmun el J6ATh 17y

PO Serr, 1)), 0 = 1,2,...

The last term is zero, since the conditional information va-
nishes.
To deal with the before last term, we note that by
Lemma 3
6 A Tp = EMWepny )A T, = Zn(Tyyeeey T 1) A )

where z,(t),...,t, ;) is & Borel function of Tyreeesty g
Thus, given 62 T 1, Tyseee, Th-1< © , the conditional

distribution is
=i _
Fplt/ ®yyeee,®p q) = P:(t A 2p(®yeee, @y 1)/ T ;0.
ecey ’t’n_l), ) ¢ e[o’w)’

B0/ ¥peens Tpaqd =15 1 = 0,1,

n-1
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By Lemma 4, the conditional information equals

o Az - ng(u/'tl,...,’t'n_l)

m
K[g (W/ ¥qyyeee, T _4)] .
fo J‘o n et Pn-172 T Fg(u/'cl,..., Tp-1)

EAT -
.dpi(t/»gl,,,,, ) = EM Lﬂ:" KIL,1aA0 73,000, T, 1)

Consequently, ( 16 ) implies

A T
d

1 1 o =
ISA«zn(Pl’Po) = L P ,PO)+E K[L,)aad, n = 1,2,...,

Tn-1

or
I (%) = B! [TMk[L 1aa°, n = 1.2
G'A'Zn ’ fa [Lu dAu, n= 39S g0ce

From here, ( 15 ) follows letting n —» co , and using the

continuity of information. O

Theorem 1 yields the following sufficient condition for

1, o,

P
Theorem 2, Let
an PR [T, log L1y )aAl<w) = 1.
Then P12 P°,
Proof., Let ( 17 ) hold. Define

, t
6, = inf{ t:jo K[LJaA0Zn}, n = 1,2,,..
By Theorenm 1,
6 -
1l .0, _ n o
I (71, = xlfo K[L,)aA%% n.

Hence,

(18) P13 P° on ‘:fs,n, n=1,2,,..
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Let B € ¥, , P°(B) = O. We have

1
ple)« Pl(N.AGne B, ¢

L =) + P&, <),

Further,
o _ 0
0 =P°B)2P°(N.¢B, &, =) =P (N.Nane B, 6, =).
According to Lemma 2, 6, = 6 (N, . ), and hence
n

{N.Adne B, 6, = w3eFq

Thus, with regard to ( 18 ),
1 =
P (N'/\Gne B, &, =) = 0,
We conclude that PL(B)& Pl(o'n< ). ( 17 ) implies
e 1 _
lim P (& <) =0,
m> oo

i.e., PL(B) = 0. This establishes P12 F°. O
6, Assume that in ( 6 )

(19) ln(t/tl,...,tn)>0, teto,w), n= 1,2,.;.

The hypotheses are then symmetrical with respect to P° and
PJ', and

t
A9 = [ 1gtaal, telo,0).
By Theorem 1,
0 0 (% wrr=liaal o ¥ (&~
1o ®°,Ph) = B2 KIghIaAy = B0 [ (Ly-log Ly-1)aAP.
Further,

(1+x log x-x) + (x-log x -1) = (x-1)log x, xe[ 0,00),
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where the expressions in the brackets on the left-hand side

are non-negative. Theorem 2 has the following corollary.,

Corollary 1. Let ( 19 ) hold together with

Pi( jow'(l-nt) log Ly dA9 <) =1, i = 0,1,

then PIN o °

Example 1. Under Pl, let N be the pure birth Markov
process with transition rates q, from n-1 to n, n = 1,2,...
Under P°, let N be the Poisson process with intensity q,+ Con-

dition ( 17 ) of Theorem 2 is
1 Q@
(20) P (=, Klap/a,1 gy (- Tpap)<o0) =1,

( 20 ) holds if and only if

[
© > I, (PhP%) = X ((qu/a,/-log (a/ay) - 1),

Example 2, Let Pl be the probability distribution of
a doubly stochastic Poisson process N defined on a probabili-
ty space (N ,A,P). Let 1Q¢,t2 0% be the intemity of N. Fur-
ther, let P° be the probability distribution of a Poisson
Process with variable intensity q(t)> 0, tel0,00). Then
Ay = q(t)dt, and

(21) L) = E4Qy|N,,uel0,t)} /q(t), tel0,0),

(See [2] for the proof of ( 21 )). From Jensen’s inequality
follows

1.0 .3 (@ = D o 5
I,(P°P%) = B [ K(L,(F)) a(t)at ¢ [ EE{K [Qu/q(t)1|¥,,

uelo,t)} q(t)at = [ E(q(t)+Q, log (Q,/q(t)) - Q,)at.
0 t t Q
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Consequently, the finiteness of the last integral is suffi-
cient for P]’% P°.
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