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LOCALLY OPTIMAL ESTIMATES OF LOCATION

Jana JURECKOVA, Praha

Abstract: It is proved that the maximum likelihood es-
timate is locally optimal estimate of the centre of symmetry
of any unimodal symmetric distribution provided its density
is absolutely continuous and has integrable derivative. As
an application, an L-estimate of the centre of symmetry is
suggested which seems to have good local properties with res-
pect to other IL-estimates.
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1. Introduction. Let xl,...,xn be independent random
variables distributed according to a common density f(x-©),
xe RY, such that £(x) = £(-x), xe R, Let X1z x(P s ., cxM
be the corresponding order statistics. Assuming that f£(x) is
absolutely continuous, f] £’(x)|dx<co and that f is uni-
modal, we shall show that the maximum likelihood estimate of
@ 1is locally optimal in certain sense among all median un-
biased estimates of @ . This property of maximum likelihood
estimate is proved with the aid of the theory of locally most
powerful tests. In the family of median unbiased L-estimates

: N (1)
of @ , i.e. estimates of the form 4_21 e; X't', we suggest

one which seems to have good local properties in the neigh-

bourhood of © .
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2. Local optimality of maximum likelihood estimate.

Let xl,...,xN be a random vector distributed according to

the density

N
(2.1) Po (xl,...,zN) = aJ'[_T,,f(x:i_-e), 8 er

where £ is a known symmetric density. The problem is that
of estimating the location parameter & by an estimate 6
locally optimal in certain sense in a neighbourhood of real
value © , One of the possible definitions of the local op-
timality of the estimate () is the following

Definition 2.1. We say that the estimate 6 is local-
1y optimal in the set € of estimates of © , if, given argy

other estimate ©* € € , there exists an €,> 0 such that

(2.2) P,118 - @|> e3<P il0*0]>¢}

holds for all €, 0 < €< €, and for all O € R .

Theorem 2,1. Let Xl,...,XN be a random vector distri-

buted according to the density (2.1) where f£ is a known sym-

metric density, absolutely continuous, unimodal and such that

(2.3) [l @]ax < 0
Let
N £(x, -0)
(2.4) B =inr{0: - = 5 =0},
= =1 rx; -9)
- £ (X; -8)
(2.5) 8 =supif :-= 4 =0}

V=1 f(xi -e)
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©  with probability 3

(2.6) 8 -

) with probability %-

where the randomization does not depend on Xl,...,XN. Then
é is locally optimal in the set of all median unbiased es-
timates of 6,

Theorem 2.1 establishes the local optimality of 'the ma-
ximum likelihood estimate. The proof of the theorem will be

based on the following lemma,

lemma 2,1, Under the assumptions of Theorem 2.1, the

test with critical function

N £(x; =-8.)

dx) =1 e AL -3 5" % >0
=4 f(xi -60)
N £ (x; -8.)

(x) = 3 ooe if - ol i

@ E =1 f(xi 'eo)
N £'(x; =6.)

dix) =0 eoe if -.= e S <0
=1 £(x; - 6,)

is locally most powerful in the set of all level o = % tests
of H: 6 = ©, against K: 0 > e,

Proof of Lemma 2,1, Remind that the test d (x) is
called locally most powerful test of O = 90 against 6 > -9
on the level o if, given any other o -test §*, there ex-
ists an & > 0 auch that Eg @ (X)2Rg $*(X) for a1 © ,

R,<B<H,+¢ .

Assume, without loss of generality, that © o = 0. Let

Py denote the probability distribution correspénding to Pg*

Forany © $+ 0 and A € By we have
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N
Pe (A) = I-AQ j‘&";r,‘ f(Xi-e) uxl...dxu =
N N
e 1
=B + 8 [ . f B[, 20xy -0) T r0xp]ax ..

(2.8) ... dxy = PO(A) +

N .
vo M LTy e) mtx) i N
=1 f A f[ ® 71;1'4 f(xj 2] )?,'I‘I‘+

,'f(xa-)

dxl es e dx“c
It holds
i-1 N
1
(2.9 aim { Fe(x; -0) - £(x)] Ty £x;-0), T 2x)f =
N
= - 7(x) W, £(xy), 144N,
Cadd

almost everywhere in x. Moreover, if € > 0,
1 -1 N
2200 f .o [ | §[eexg-0) 2 ]I, £a5-00, T ) £xy)
00
Axy oo odxy = .j;n \ % (£(xy -6)-f(xi))ldxi =
00 e & o
1 L4 1 ’
= Lo | § [ 2 x-vat|axy A E; (xg-t)|ax; at,
and we get an analogous result if 6 < O, Thus
(2.11) 1 | & 0)-tx) | T 2x-0)
. 0_’13 sup _r...j 3 (£(xy=- 0)- x; P xj-e

N o0 R
é=g*1f(xj) dxl...dx‘é:!‘w l r (xi)ldxit

It then follows from (2.9),(2.11) and from Theorem II.4.2 of
1) that
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3, L i 8)
in = [ f § ex-0)-rxy)) T, s

N N ,
5:11;1 f(xj) dxl...dxn =;‘§4 J"A'J‘ (- (xi))

(2.12) N N f'(xi)

5,11—1. £xy) axpeeaxy = fooe [ (-3 =)

3%+

é,g" f(xa-) dxl...de.
It followe from (2.8) and (2.12) that

N £7(x;)
— < - x‘l

(2.13) Gimglrnw -pw]= Jo.f =2 T )

N
5'1;1'4 £(x;)dx; .. .dxy
holds for any A € B .

Let us denote
f (xi-e)

N

(2.14) S(x -0) = -,=
=1

5d r(xi-e)

and
(2.15) A =4x: S(x)>0% ; A" =4x: S(x)z0%.

Let § be the test defined in (2.7) and let Q* be any other

level %- test; denote
(2.16) B={x: § (x) =1}, B’ =4ix: $*(x)>0}.
Then (2.13), (2.15) and (2.16) imply
(21D lim 5[Ege @) - E@ (D] =

= L 555 [ Py (A) +Bg(4")-P (A)-P,(A")] =
cee | S(t)i'fl'4 £(x;) ax)...dxy

{x:S(x)>0%
- 603 -



and
e A
(2.18) it 3 [Bg 3% (x) - B d*(x)] «

N
< _|’ 3 f S(x)él_T,, f(xj) dx)...dxy £

N
LN .TT 3 LN 2 L]
;-fs(xboj S(x). T, £(x;) dx;...dxy
(2.17) end (2.18) mean: that the function Bg(d (%)- 3% (x))

is nondecreasing at © = 0, so that there is an €> O such

that this function is nonnegative for 0 <.0 < € .

Proof of Theorem 2.1. The symmetry and the unimodali-

ty of £ imply that S(x-©) is nonincreasing in © for any
fixed x and that

= 1
(2.19) Pe(S(X- 0)<o0) = Py(s(x-8)>0)< 5o

f'(xi)
Moreover, the functiom -_24
v=Tf(xg)

is, as a finite sum of

nondecreasing functions, continuous almost everywhere in
¥ = (X7,..0,%y) and thus S(x-©) is continuous in @ for al-
most all © and almost all x.

The set 4© : S(x-©)< 03} is a half-line; denote

(2.20) O (x) =inf {O : S(x~0)<0}.

It follows from the continuity mentioned above that
(2.21) \PG(S(X-_O_) =0) =1 for any O e R
Analogously, put

(2.22) 8 (x) = sup {0 : S(x-0)2>0}

and
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9 (x) with probability %-
B(x) with probability %-

N
where the randomization does not depend on ¥. Then © is me-

dian unbiased; actually,

A 1 -—
(2.24) P (8 <8) =5[P(0<O)+P(B<B)]=

=3 P, (S(X)£0) + 3 B (S(X)<0) = }

and we get Pe(g >8) = % analogously. Let ©* be any other
median unbiased estimate. Then the sets { x: 0*(x)<0°? and
-i!:/é (x)< 9°§ can be considered as acceptance regions of
level % tests of Be“oz © = @ against leoz e > Go for any
e o3 the second of them being locally most powerful in view
of Lemma 2.l. Consequently, there is an ¢ o such that the
first test is dominated by the second one for 0,<0< 60 +

+ €5+ let us fix an ¢ , O<e,<€°. Then it holds

(2.25) Pel(§< ©1-e)< B (6% < 0)-¢) foray O¢ Rl

Actually, £ x: 6<01-E.’: and {x: O*< ©,- €% can be con-

sidered as acceptance regions of level % tests of the hypo-

thesis H: 8 = @,-¢(=0 ) against K:  >6,~ € ; the first
one being locally most powerful. (2.25) then follows from
Lemma 2.1, Analogously, we derive

N
(2.26) 25 (820 400)48 (6%56, +¢)

for all ele BJ‘ and 0 < e<€°.
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3. Application: an l-estimate of location with good

local properties. We have shown that the estimate & defi-
ned in (2.4) - (2.6) is locally optimal in the sense of Defi-
nition 2.1 among all median unbiased estimates of @ , It
follows from Theorem 2.1 that 6 is locally optimal also
among all median unbiased estimates based on the order sta-
tistics X(l)é voe éX(N). Suppose now that we wish to estima-
te © by a median unbiased L-estimate, i.e. by an estimate
of the form

~ N :
= . x(1)
(3.1) 0 =, ¢ X

which has good local properties relative to other median un-
biased L-estimates. Such estimate must be a good approxima-
tion of 6 with respect to other L-estimates; both estima-
tes may coincide for some special distributions.

The problem of the best approximation of 6 by an L-es-
timate has been solved asymptotically as N> v suppose
that the coefficients e; in (3.1) are generated by a func-

tion J(t), J(1-t) = J(t), O<t<1, in the following way:

(3.2) ey = § i), i=1,...,K

If N—> o and various regularity conditions are satisfied,

then the function

\ 1
(3.3) J(r) = deftd) | pplgy) [fo doitd) (5 l(e))ae)"L

wheére

¢ =l
(3.4) (t,2) = - in—uf 2t 0<t<1,
I 2(F L)) "
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yields an asymptotically efficient estimate, i.e. one which
achieves the information inequality lower bound as N —» 0O
(Jung [2]).

The problem of the best approximation of é by an L-es-
timate has not yet been solved from the local point of view.
Here we shall only suggest a member of the family of L-esti-
mates which seems to have good local properties,

Suppose that ¢ (t,f) given in (3.4) is continuous at

= 1 N-2
t = =T *» NI and that

: (t,F ;
(3.5) t-lrlll)n —i‘—_l-l—l < o ;

(t)

moreover, let N = 2n, Put

1 .. ¢ (t,f)
Cy = Cy = lim
1 N Kt-rO F

(t)

(3.6)

and

(3.7) ey = CN_i+1 = % . —}ﬁ% - @ (%fi—,f), i=2,...,n,

where

(3.8) K =2 1in 2tf), , 3 R = SN
30  Fly) =2 F—‘l_(gé}j Lo

The coefficients c¢; given by (3.6) and (3.7) imply relative-

ly small values of the sums

). .
(3.9) 2 + %o {]-ffg(i g) -xe; xPgy] 2]

for sufficiently small £, 0< e< € o+ Actually, we may
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write

.oo(i) .

(i) .
_£i(x ) (i)

(3.10) = P - Ke: X e =

=8 VL) [ gielgog)N-i gy

i-1 A{
where
¢ =1

(3.1 45 = {te(o,1): |- %r(‘:—;f - Koy Fle)|2e],

i= l,...,n'
The density of beta distribution which appears in the last
integral is unimodal with the unique mode at t _—T , 1 =
= 1y...,n. Considering a fixed i, 2 £ i £ n, we see that ey

given by (3.7) eliminates the expression
l uj“—)l K c; Fi(t)
£(F™(t))

just at t = ?i and thus to any ¢ > O there isa Jd“ > 0
such that

el
(3.12) ]t-?i|<d“==> l-f—fi(f_jl(f;-)l-xci Flit)|<e .

It implies that

(3.13) N-h fA ti=1(1-¢)M-igy =

.
Vv

N-1 i-1 N-i
N(TT) t 1-t) at
G- tEA,{‘)l:{'t"‘ |24 :

n

80 that the interval around Qi with the highest values of
the integrand does not belong to the integration domain.

- 608 =



Similar considerations could be made for j = 1, On the ot-
her hand, considering any other choice of ¢ 'a, there is an

i, 14i4n and J° > 0 such that lt-€i|< o implies
=1
l- £ (F_ (t)) _ g c; Fl) l 2 € for sufficiently
£(F (1))

small € > 0. A neighbourhood of ’tti with the highest values
of the integrand is thus a part of the integration domain in
(3.10).

As an illust.ration, consider three most typical unimo-

dal symmetric density shapes.

X
(i) f(x) = 1 e?.' xeR

Veor

(standard normal distribution)

c. =1'}‘, i=1,...,N

1
8-=%=8.
(i1)  f£(x) = 3 o~ lxl | xe R

(double exponential distribution)
€y = ey =0
= = [K 10g 5Nl ]-1 i =2
ef = Ch_jay = %8 7Ty A Egmenyh

5 & N-1 -1
K,-2L2=:2 [1°3'2T'—1')'1- ]

Cp = [K log %]-1

-X

(iii) £(x) =m—— s xeR
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(logistic distribution)

Co = Cy = (0]

_ - N+1 . N-i,=-1
€ T Cn_je1 = 2 (T - i) (K log '{:I) ,
i=1,2,.,..n.

m .
K = 4.552 (E%l -1i) (log %Ei)-l

v

o = (K log ﬁgz- )-1.
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