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RING VARIETIES CLOSED UNDER IDEAL SUMS

B.J. GARDNER, Vancouver

Abstract: A variety 7 of rings or algebras is S-clo-
sed i + Je V whenever I and J are ideals of a ring or
algebra A and both I and J e 7 . A variety of associative
algebras over a field is S-closed if and only if it is clo-
sed under extensions. A non-trivial S-closed variety 7 of
associative rings can contain no rings with torsion-free
additive groups and consequently 7 is determined by subva-
rieties p=iAe vV | The additive group of A is p-pri-

mary } where p is prime. For almost all P, i7p =40} ; ot-
herwise, either 7'  is extension-closed or ifp is between

the varieties defined by ptn/ZJx =0, pmx = 0 for some posi-
tive integer m.,
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Introduction. We shall call a variety 7 of rings or
algebras S-closed if whenever I, J are ideals of a ring or
algebra A, with I, J € 7" , we also have I + J € 7 . Exam~

Ples of S-closed varieties are the extension-closed varie=

ties, those varieties 7 with the property that if a ring
or algebra A hes an ideal J with J and A/J € 7, then A e
e V. (Of course, in both of these definitions everything
is assumed to be happening in some prescribed "universal"
variety U and, more precisely , the varieties in which we
are interested are the subvarieties of U which have the

properties relative to % .) For if ¥ is extension-closed

=
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and I, J are two ideals of a ring or algebra A, then
(I +J)N=I/InJd, s0 I +Je? if I, de V¥V,

Note that an S-closed variety 7 is closed under for-
mation of arbitrary ideal sums. For if {I, [A €A} is a
set of ideals from 7 and 81ye00,8, € =1, , then{al,...
cees8p 3 € I‘Ql +ooot Iane Y for some AqyeceyAp € A,

Thus the subring generated by {a;,...,a,1 is in V' . This
being so for any finite set, we have = IJLG v .

Essentially we shall be concerned with associative rings
and algebras. In § 1 we show that for algebras over a field,
a variety is S-closed if and only if it is extension-closed.
The situation is not as simple for rings. For instance, for
any positive integer £ , the variety defined by the identi-
ty 4£x = 0 is clearly S-closed. Other examples can be ob-
tained by combining varieties like the one just mentioned
with extension-closed varieties. Whether or not all S-closed
varieties arise in this way is still unknown, but we do show
that for any non-trivial S-closed variety 7 , there are fi-
nitely many primes p,,...,py such that every ring in ¥ is
a direct sum of rings whose characteristics are powers of
P1se-+yPy, and for each i, either there are integers 1 &

4 [m/2] £ n&m such that 7’9 =fA eV | Ahas a py-primary
additive group §} is between the varieties defined by p?x 20
and p:x = 0, or 17p is an extension-closed variety.

We shall use the following notation: A" is the adaiti-
ve group of a ring or algebra A, A+° the zeroring (or zero-
algebra) on A* (i.e. the ring or algebra with all products
zero); for elements Uyyeee,Wy of a ring, (ul,...,un) is
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the subring they generate.

The group theory analogue of the problem treated here
was solved by T.S. Shores [7] : there are no non-trivial va-
rieties of groups closed under normal products. The author
is grateful to Professor Shorea for calling his attention
to this result and to the associated question for ring vari-

eties,

1. The Algebra Case. Let f2 be a commutative ring
with identity. We first consider S-closed varieties of 0 -
algebras containing 0n*o,

Proposition 1.1. If n* belongs to an S-closed vari-
ety U of 0 -algebras, then 7 contains all f -algebras.

Proof. Consider the algebra T, (f1) of strictly lower
triangule nx n matrices over 2 for a fixed integer n>1,
For kx = 1,2,..., n -1, let

I = {(aij)cl'n(ﬂ)\aij =0if ick+1or j>k? .

The Ik are depicted in the following diagram

Y V XN
I, 12 13

Each I, is an ideal of T, (f) and Ii = 0 for each k, so, by
assumption, 7 contains I + I, +eoe* I, = T, (). Thise
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is 8o for every value of n, so m'llq T,(2) € V' . Then if
V' is not the class of all algebras, IT T,(f2) satisfies
a polynomial identity and hence (cf. [6), pp. 181-182) a ho-
mogeneous multilinear identity % 8g Xg(1)***Xg(n) = O whe-
re 6 varies over some set of permutations of 11,2,...,m}
and each a € Q\{ 0}, Now each T,(f) satisfies this iden-
tity; in particular this is so when n>m. For such an n »
consider the matrices E21'E32""’Em,m—1€ Tn(.n.), where Eij
has 1 in the (i,j) position and zeros elsewhere. We have
Em,m-l Em-l,m—2 eee E32321 = Ejq1» while the product taken
in any other order is zero. But then ag Enl = 0 for some

6 , which clearly is impossible. Thus there is no proper

identity satisfied by 7', i.e. 7 contains all algebras.//

The case where f) is a field is worthy of separate men-
tion.

Proposition 1.2. If O is a field and 7" an S-clo-

8ed variety of ) -algebras, then 7 is either
(i) {03,
(ii) the class of all algebras, or
(iii) an extension-closed variety.

Hence if N is infinite, V" must be (i) or (ii) and if 0

is finite, V" is (i), (ii) or the variety generated by a fini-

o

set of finite extension fields of 0 .

Proof. If Y is neither (i) nor (ii), then by Proposi-
tion 1.1, O +0 ¢ V and Vv therefore contains no algebra
with a non-zero nilpotent element. That 7" is extension-clo-
sed can now be proved by analogy with the theorem of [ 31 and
other results quoted in that paper. The final assertion fol-

lows from results in § 2 of [11 . //
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2. The Ring Case. Throughout this section, ¥ will
always be an S-closed variety of rings. We proceed to our
principal result by a sequence of propositions. Let ’I/’p =
= {A €V |pA =03 for each prime p.

Proposition 2.1. If ’U’p*{ 0% for infinitely many
primes p, then 7 contains all rings.

Proof. Note firstly that ’Vp can be viewed as an S-
closed variety of algebras over the field Kp of p elements,
80 that by Proposition 1.1, ’V’p contains all rings of cha-
racteristic p if K0 « V,e Let P = 1p| x;° €V, 1,
u=dp | Yy +403, K04 ¥ 3.

If P is infinite, consider a free ring F on W o 8enerators,
By Proposition 1.1, F/pF e ’l/‘p for each peP, But ff) pF = 0,
so F, as a subdirect product of {F/pF | pePt, is in ¥ ’
and therefore 1 contains all rings. If, on the other hand,
M is infinite, then by Corollary 1.2, there is a field !‘p €
€ ’pr.for each pe M and then TNTI' I.pe V" . The element e
of T Ib whose p-component is the identity of Lp for each p
is idempotent and has infinite additive order. It follows
that V' contains the ring Z of integers. But then K;o =

= qZ/qzz e U for every prime q and 80, as before, V' con-
tains all rings., //

Proposition 2.2. If V' contains a ring A for which A*
is torsion-free, then 7 contains all rings.

Proof. Let A € ¥ have torsion-free additive group.
First suppose there is an as A with az = O%a. Then
x;° X <a>/p<a>e V for every prime p, so by Proposi-

tion 2.1, V' contains all rings.
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Now suppose A has no non-zero nilpotent elements. If
O%*beA, then {b) has no nil ideals, so neither does
{b>* , the ring obtained from < b?> by the adjunction of
an identity element in the usual way. But (b>¥ is a homo-
morphic image of ZLx1, so <b>¥* has nil Jacobson radical
(41, Theorems 2 and 3), whence {b>¥ | and therefore al-
s0o (b?» , is semiprimitive. We can thus represent (b) as
a subdirect product of a family < Di\ ieI§ of primitive
rings. Since b has infinite additive order, either

(i) some D; has characteristic 0, or

(ii) the D; have infinitely many different characteri-
stics.

In case (i), let Dj have characteristic O, Then there is a
division ring A such that either D; & M (4), the ring of
mxm matrices over A , for some m, or for every n, I).,j has
a subring B, with I(n(A) as a homomorphic image. (See [5],
pp. 43-44.) In any case, U contains Dj, hence some W (4)
and therefore A . But A has a subring & Z so as in the
proof of Proposition 2.1, we see that 7 contains all rings.
In case (ii), arguing as for case (i) but using Di's of va-
rious finite characteristics, we can show that Kp e U for
infinitely many primes p. By Proposition 2.1, ¥V again con-
tains all rings.

_— e s S, S s

ments of rings in 7 is finite.
Proof. If £,,£,,... are infinitely many distinct
orders, choose, for each k, a ring A, € 7 containing an

element of order ,ek. Then ¥ contains 'l;r' A, , and hence
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also its (non-zero) torsion-free factor ring, contradicting

Proposition 2.,2. //

Thus there is a finite set {pl,...,pk} of primes,
and a finite set 4 rl,...,rk} of positive integers such

that every ring R has a unique representation
R = Rl D ... ® l!k,

where P; riR:-L = 0 for each i. This of course is true of any
variety consisting of torsion rings. For such a variety % ,

let

Q-Zp ={AheU| A" is a p-group § ,
for gll primes p. Among the varieties consisting of torsion
rings, there are the classes {A|£ A = 03} for all positi-
ve integers £ . These are clearly S-closed. As mentioned
in the introduction, so are the non-trivial extension-closed
varieties - the varieties generated by finite sets of finite
fields.

We can now state our principal result.

Theorem 2.4. Let 7" be a non-trivial S-closed variety

of rings. Then 7 consists of torsion rings, and those
r p+ 10} are described by the following conditionms.
(i) 1f "ﬁ'-p contains no nilpotent rings, then 7‘, is

the variety generated by a finite set of finite fields.

(ii) Ir W'p contains a nilpotent ring, there exist

positive integers m(p), n(p) such that

1 1a]prP a=03¢ ?ps{Alpm(p) A=03;
(2) pn(p) A = 0 for every A ¢ 17'p with A2 = 0;

(3) [m(p)/2l& n&m,
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On the other hand, a variety U consisting of torsion rings

is S-closed if those ’l—Lp + {0% are described by (i) and

(iii) Ir ?Ep contains a nilpotent ring, then there
exists a positive integer n(p) such that ap ={a] p"(P) 4=
=0%.

Proof. If 71 is S-closed, then by Corollary 2.3, ¥
consists of torsion rings. Clearly each 'T'rp is an S-closed
variety. If 'V’p #4{0% and there are no nilpotent rings in

']_fp, then Q—Fp is generated by a finite set of finite

fields (cf. [3]). If there are nilpotent rings in fp, let

n(p) = Max{k | 7 contains a ring A with A2 = o and pkA =
=o#pclay,

m(p) = Max i1k | ¥ contains a ring A with pk A=0#%#

# plag.
Let fL be the ring of integers modulo pn(p). Then
17pn{A | pn(p) A=0%

can be viewed as an S-closed variety of £ -algebras, con-
taining .D.+O and therefore, by Proposition 1.1, all f. -al-

gebras. Hence
a1p2P) A =03 ¢ "v"p. Aleo, 17ps{qpm(9) A=0%.
Let R be a ring in 7 with p™(P)R = 04 p2(P)-1p, 1.¢

(m(p) + 1)/2 if m(p) is odad
t =[(m(p) -1)/21+1 = ®
m(p)/2 if m(p) is even

Then (ptl)zs pm(p)n = 0., Since ptR is in ¥, we have

pn(p) (ptm) = 0, so n(p) + t=m(p), i.e.
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(m(p) - 1)/2 if m(p) is odd
n(p)Zm(p) - t =
m(p)/2 if m(p) is even
= [m(p)/2]1.
The final assertion of the theorem is clear from our

remarks above, //

3. Non-associative Possibilites. We shall not pursue

in detail the subject of S-closed varieties of non-associa-
tive rings, but merely make two observations, Firstly it is
clear that any variety €A |£A = 0} of non-associative
rings is an S-variety. Secondly, among the S-closed varieti-
es of associative rings we have the class of boolean rings,
this being the variety generated by Kz and being extension-
closed. We have noted elsewhere [2] that the variety of non-
associative rings defined by the identity x° = x is not ex-
tension-closed. We now present an example to show that this
variety is not S-closed, either.

Exemple 3.1. Let A be an algebra over K2 with basis

{u,v,w} and multiplication table

u v w
u (u 0 (¢}
v |0 v G
w |v 0 w

Then (v,w) & K,®K, < <u,v> , s0o ¢u,v)> and {v,w)
satisfy x° = X; they are also ideals of A, But (u,v) +
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2 2

+ {uy,w? = {uyvyw) = A, while w+rv+w?=u?+e?s

+ wu

2 _
X =

11

(2]

£3]

[ 4]

£5]

Lel

£7)

+wl =+ v+v+w=u+w, soAdoesn’t satisfy

Xe
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