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Abstract: We prove the existence of periodic solutions for
nonlinear ordinary differential equations of the Liénard type under
the various conditions upon the nonlinear part of the considered
differential operator.
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1. Introduction. Let n be a positive integer and let T > O.

Denote C,rI)\ the (Banach) space of all n - times continuously
differentiable and T - periodic functions defined on the real

line R with the norm

lleps 25, pex 14000l -

o XER

The following theorem is proved in [1]

In the sequel k denat \ a positive integer.

Theorem 1. Let Ay e azk-l be real numbers such
that
(1) ( -1y QoK -2/<©
for j = 1, «ee.. , k=1. Let f and g be continuous real valued
functions,
2 sup |8 I = M oo
@ fe€R I u ) <
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Suppose that there exists r>0O such that

g ()§>0, ger ,|f|>r
or
g (§)§<o, fER L \§>r .
Then for arbitrary y ech’\ such that

T
(3) j‘)’(tldt'o

o

there exists ueci‘k verifying the Liénard equation

@ -~ gra, B Uge ta T+ () dixrmue) =y(x) -

Moreover, arbitrary solution ueC":f satisfies
§%) =] < <f

where 1
2

-k
f=-rt3 2122 (2nm) (M+HYHC0)

T

From this result it immediately follows :

Theorem 2. Let f, g : R—>R be continuous functions,

suppose (1), (2). Then for arbitrary vy & C,‘I’\ with

T
(6) limsup g(;)(—;—J y(t)dt(;iminf g(§)
g_,.-o o —n4 00
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2k

there exists at least one solution u & C’I‘

of (4).

Moreover, arbitrary solution u & Cz,ll'f satisfies (5) with

sk -k
2,2 ~ =
y =rt3 “7°(2m) (Ss:pRl e (% )|+ “yncg)

where

2(§) =e(§)- & |v(t)at,

018

Y(x)=vy(x) -3 |v(t)atr,

o—n

and for r170 it is

(>0 i \§|>r, -

Theorem 3. Assume (1). Let f, g: R —> R be continuous

and suppose that there exist finite limits

f"'“

im g (§) =8 (+=) . ;l_i:n_‘s(;)-g(-")-

Moreover, suppose

() min {g(—"’), g (o-)}< g ({)< max {s (-°),g(+* )}

for each 3 ER.

Then the equation (4) has at least one T-periodic solution for

yéCo

T if and only if

T
(8) min {g(_u), g (,w)}(.fi\_ S ¥(x)dx< max {g (-%2), g (t* )}.
o
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For the proof of Theorem 1 the following property (F) of the

differential equation (4) is essential:

(F) I ye C,; , then the set of all T - periodic solutions

of the equation (4) is a bounded subset of the space C,(I" e

Now lets prove that the (F ) is in a certain sense
necessary and sufficient for the validity of the assertion of

Theorem 3.

Thegrem 4. Let f , g : R—R be continuous.

Suppose (2) and denote

E saw gl o - a5
géR ;eR

? ={ye C,‘; ; there exists a T-periodic solution of (4)}

T

m=[yec;; (E<%Sy(x)dx<a}'
o
T

n-[yéc,‘;; gé%x y(x)dxéa}

Assume that the sets g_l( G), 5-1( G) do not

contain a nondegenerated interval.

Suppose that the differential equation (4) has the proper -

ty (F).

i ) Then there exist finite Limits g(+%), g (-<)and it is
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(PnHvme (s a}

i) If (?n%)\m = {6} , then we have
g (¢+) = G or g(-2) = G.
i) 1t (PNt - {G} , then we have
g (*®) =G or g (-%9) = G.
(iv) 1f (POAYONM = ¢ . then it is

g(-%) =G, g(+9) =G

g (-9 < g (§)<e (*=) . &R

g(-%9) =G, g~ =G

g (+°) < g (§)<e ( -%) ,{<R

Proof: i) Suppose that g (r0) does not exist. Denote

A = limsup g(p . B = liminf g (g)
gt §—r+
Then B <A, and there exists a sequence

o0
{gn]n -1 l’l\il:l°° n =*% such that

e(§,) - 535 -

Thus AAB

, and the constant functions %n are the
T - periodic solutions of (4) .
This is in contradiction with the property ( F ).

Analogously we prove the existence of g (- %).
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Let yé(@f\'n)\mand let, for example,

1 —
5 v(x)dx =G.

0~—1

¥ u € C?rk is a solution of (4), then we have

D
f(E—gwo(x));dx=o
(o]

and since g-l( C_}) does not contain a nondegenerated interval,

uo is a constant function, thus y = 6 0

The proofs of parts (ii) - (iv) are the consequences of

the part (i) .

From the Theorems 3 and 4 it immediately follows :

Theorem 5. Suppose that f , g : R—R are the
/

28y,

continuous functions, let g be bounded and let g

g—l ( G ) do not contain a non degenerated interval.

Assume (1).
Then the equation (4) has the property (F) and

?-mu and only if there exist g (+%0) , g (-9) and if ( 7)

is fulfilled .

In this note we shall deal with the T -periodic solvability
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of (4) in the case of nonexistence of Limits g (*®), g (=00 ).

2. Expansive nonlinearities. The following defihition is a

generalization of the so-called expansive function introduced in[.‘:)].

Definition. Let g : R—R be a nontrivial bounded conti-

nuous function. For p, q such that
(9 inf g ({)<a<p<sup g )
EeR ieR
we put
My g " {de Ry mye R, ogn < M, such that for
gé(ﬂrﬂ(z) it is g(g)}p and for

Sedom, -m) itis ¢ (§)<a and asm-m, T U

U {a eRJn, mye R, Osay < M, such that for
gg(ql"vlz) it is e (§)<q and for

§ed -my =MD it is g (§)>p and demy-m, ¥ -

Denote
- M ;
p,ql 8) = sup M,

If Ep c‘( g ) = for each p,q from (9), then g is called the
1,

expansive function.
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Examples. (i) Ep,q (sin) = min {ﬂ—z]arcsin plX-2|arcsin g‘}

for each -1 < g% pL1

(ii) The function
2k-1

2kv1
g: § —>  sin ( g )
( k is a positive integer ) is expansive .
(iii) The function

2k -1

g: §v—7 arctg §2 . sin( §2k*1 )

is expansive.

The main result of this sectionis the following.

Theorem 6. Suppose (1) and let f,g: R—»R be conti -
nuous, g bounded. Then the equation (4) has at least one

T - periodic solution if

1
a) YEC;. qé—,—r— vy (x)dx<p

o—n

1

- -k

b 3 21(2%) (suple (/- F
i‘.R

O%—1

T
v dxlfl(r%jY(X)“ll J% Ep'q(g) .
o Cr

Proof. Suppose
g (§)>p for §€ ("11|~12) )

Sl§)<q for §E<-°5n"‘ll7 )
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1 @T
- -k
3 2’1‘2(21\7) (sup|g(g ) —% S v( x)dxl+“y-—%£y(x’)dx“ O)("[z-‘[l.
§€R (@] o CT
Define the function gpq by
g qp) = e i fel"n G
8" § — gp.ot§) = g(-7) it §€(-2-",7
gp’qkﬁ) =g( ,ylz) if §é 4’"2\’”) C
Obviously gp,q(‘“’)>P and gplq(-"")<q .

According to Theorem 2 there exists at least one T - periodic

solution u, of the equation

(10) -(-1)ku(2k>(x)+ ai_‘( Zk"J(Zc)i' et a2k_1u'(x)+f(u(x) ) u"(x)+ gp'q(u(x))xy(X) 5

Moreover, from (5) it follows

1 T
-z -k
I u°||c°<"ll+ 3 %12 (2m) (szpn\s(g)—%sy(X)dxl +
k4o g o)
T
1 I R
thy-2\vax | k2 M,-1, =", -
o Cr
From this we have
g (u (x)) =g, (u(x)) , x €R

and thus the function u is a T -periodic solution of (4) .

As a corollary we obtain immediately :
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Theorem 7. Suppose (1) and let f,g : R—>R be continuous

and let g be expansive.

Then mC?C }’l

If, moreover, the sets g (G), g (E) are non empty and do not

contain nondegenerated intervals then

P-muis. <
-1 _ -1
If the sets g (G), g (G) are empty then

P -

3. Mathematical pendulum equation. From the previous

section it follows that the equation

2k-1
ut(x)+sin (u 2 x)) oy (x)

possesses at least one T -periodic solution if and only if

T
yeC;, -1(—%Sy(x)dx<1 or y-tl.
o

Now we shall consider the equation

(11) u"(x)tg(u(x))=y(x),
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where g is a T-periodic continuous function. The model for such

equation is

(12) u" (x)+sinu(x)= f(x)

which has at least one T -periodic solution, provided there

exists p&( O,1) such that

T
-p<k fyv(x)axsn ,
o
and
2 T T
3 2T2(1+ Tllj y(x)dx‘+“y - %Sy(x)dx“ o )T~ 2 arcsin p
(o] (8] CT

(see Theorem 6 and Example (i) ).

In the sequel lets suppose :

-~

a) geCi’, . |g’(§)l$1 for SER ;

b) the sets g_l(a), g_l(g) do not contain nondegenerated inter-

vals.

It is obvious to see that
Pa
(AN P-{z.c}.

o

(j)is unbounded subset of C’I‘ .

q)is closed in C,; '
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( the last assertion follows from the fact that we can consider only

such solutions of (11) for which |u (o )KT) V

Theorem 8. Let Te( O,X) , V€& ch" and x_ & R.
If uy u, are T -periodic solutions of (11) such that
ul(xo)-uz( x, ) =c¢
then u, and u, coincide on R

Proof. Denote v;( x) = u(x)-c. Then vié.c,zr (i=1,2)

satisfy the equation

vy g(crv)=y.

There exists a function g : R —» R such that

Vi) -vo(x) = g (et v (x)) -8 (er vy (x)) = (§(x)) (vp=vy (=)

and, moreover, the function

g(§ (1)) (v ) =vy ()

is continuous.

Thus

x +T x +T
o

o
j (v]"(x)-vz’(x))2 dx = l S (v'i(x)—vz"(x))(vl(x)-vz(x))dx‘4
x x
o o
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x+T +T

o xO
él j gl§(x)) (v,(x) - vz(x))2 dx\ Sj (vl(x)-vz(x))zdx S
X x

o o
T2 x°1T 2
¢ | (v -vi(x))?ax
VR .

from which it follows that
X T N
o

J (vl(x)-vz(x))zdx =0 .
x
o

This completes the proof.

Theorem 9. Let T€( O,%) and vy e_C,‘;‘ .
Then the Dirichlet problem

u'(x)+g(c+u(x)) = y(x), xe(O0,T)
(13)

u(O)=u(T)=o0

has a unique solution for arbitrary CER .

(he existence of at least one weak solution is possible to
prove on the basis of the theorem on surjectivity of pseudomono-
tone operators - see [2] . By meansdstandard regularity argumen-
ts we obtain that arbitrary weak solution of (13) is classical. The

unicity may be proved in the same way as in Theorem 8.
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In the sequel we shall suppose TE€( O,9C ). Denote by

?;c.y the solution of (13) put

~
uc'y(x)-c+uc'y(x-k’1‘)

for xe<{kT, (k+1)T) ( k is an integer).

It is easy to see that ucy is a T-periodic solution of (11) if

1

and only if

T
g lugy1x)) dx = fy@ax.
(]

Q-1

Define the mapping ? t R x C,‘; = C,‘;‘ by

? (c.y) = M 5

It is possible to prove that T( *, ') is continuous .

Let y € cfl" be fixed. Define
QT
$y e fceo ey (ax.

o

Then ?Y : R —>R is continuous T - periodic function. Put

(14) r\ (y)-max?y(c) ’

CeR

(15) (y)-minCP(c).

x cerlY

The mapping P: C,(I’\——v R is upper continuous and

x : Cg——'—'r R is lower continuous .
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The main result is the following theorem the proof of which

follows immediately from the pPrevious considerations.

Theorem 10. Consider the differential equation (11) and let

T €( O,X). Then

T

q)={yec,‘;;){\(y)éSY(X)dxér(Y)}'
o

wherer ’ Y‘ are defined by the relations (14), (15) .

Remark., It seems that the better characterization of the
j? . .
set for the equation (11) is an open problem up to now,

In this direction it will be interesting to give some further pro-

perties of the functions X‘ ,r‘, e.g. X‘( v ) SOQ\——‘( vy).
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