

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log57

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,3 (1977)

ON CONGRUENCES OF THE LATTICES SUB (L)

Ivan VLČEK, Praha

<u>Abstract</u>: G. Grätzer suggested (see 1 , problem 7) to characterize the lattice Sub (L). In this paper some necessary conditions for L = Sub (L) for a finite lattice L are given.

 $\underline{\text{Key words}}\colon$ Lattices Sub (L), transposes, f.c. elements, atomic congruence.

AMS: 06A20 Ref. Z.: 2.724.61

1. Preliminaries. Let L be a lattice. Sub (L) denotes the lattice of all sublattices of L, ordered by the set inclusion. C(L) denotes the lattice of all congruences on L; & denotes the smallest element of C(L) (identity on L).

The set consisting of elements a,b,... is denoted by (a,b,...). If M is a set, we sometimes write,(M) instead of M. The symbols \bigcirc , \bigcirc denote set intersection and union respectively.

The symbols \cap , \cup denote the lattice operations of L. For the lattice operations of Sub (L) we use symbols \wedge , \vee . By $(a,b,\ldots)_L$, $(M)_L$ the sublattices of L generated by (a,b,\ldots) , M are denoted.

It is well-known that Sub (L) is a complete, atomic algebraic lattice having Ø as the smallest element and L as the greatest one. All atoms in Sub (L) are precisely all one ele-

ment subsets of L.

2. Congruences on Sub (L).

<u>Definition</u>. A lattice L is called <u>subdirectly irreducible</u> if for any arbitrary system $(\Theta_i)_{I} \subseteq C(L)$ holds: $\Theta_i = \varepsilon$ implies that $\Theta_j = \varepsilon$ for some $j \in I$.

<u>Definition</u>. Two (closed) intervals [a,b],[c,d] are called <u>transposes</u> if $a = b \cap c$, $d = b \cup c$ or $c = a \cap d$, $b = a \cup d$. In the first case we write [a,b] / [c,d], in the second case [a,b] / [c,d]. It is obvious that the relations / (b,d), are transitive.

We shall use the following lemmas.

Lemma 1 (see [1], p. 24). A reflexive and symmetric binary relation Θ on a lattice L is a congruence relation iff the following three properties are satisfied for all x,y,z,t ϵ L:

- 1) $x \theta y \text{ iff } (x \cap y) \theta (x \cup y).$
- 2) $x \le y \le z$, $x \Theta y$, and $y \Theta z$ imply that $x \Theta z$.
- 3) $x \in y$ and $x \ominus y$ imply that $(x \cup t) \ominus (y \cup t)$ and $(x \cap t) \ominus (y \cap t)$.

Lemma 2. Let L be a finite lattice, $\Theta \neq \varepsilon$ a congruence on Sub (L). Then there is an atom (a) in Sub (L), such that (a) $\equiv \mathcal{D}$ (Θ).

Lemma 3. If Θ is a congruence on a lattice L, [p,q], [r,s] are transposes, then p Θ q implies r Θ s.

<u>Definition</u>. An element of a poset P is called <u>fully com-</u> <u>parable</u> (f.c. element) if it is comparable with any element of P. A set consisting of f.c. elements is called <u>f.c. set</u>. Remark. If $I \subseteq L$ is an f.c. set, $x \in Sub$ (L), then $(x \uplus I) = (x \lor I) \in Sub$ (L).

<u>Definition</u>. Let I be an f.c. subset of a lattice L. Let $\tau_{\rm I}$ denote the binary relation on Sub (L) defined in the following way:

for $x,y \in Sub$ (L) $x \sim_{I} y$ iff there is $J \subseteq I$ such that $(x \wedge y) \cup J = x \vee y$.

It can be easily shown that au_{T} is reflexive and symmetric.

<u>Proposition 1.</u> Let L be a lattice, I an f.c. subset of L. Then $\alpha_{\rm I}$ is a congruence relation on S b (L).

Proof. We shall verity the properties from Lemma 1.

- 1) Obvious.
- 2) $x \neq y \neq z$ and let J, $J \subseteq I$ be such that $x \uplus J = (x \land y) \uplus J = x \lor y = y$ and $y \uplus J' = (y \land z) \uplus J' = y \lor z = z$. Then $z = x \uplus J \uplus J'$, i.e. $x \nsim_T z$.
- 3) Let $x,y,t \in Sub$ (L), $x \in y$ and $x \sim_{I} y$. Then $x \in J = (x \wedge y) \in J = x \vee y = y$. But J is an f.c. subset (also a sublattice), so that $y \vee t = (x \in J) \vee t = (x \vee J) \vee t = x \vee t \vee J = (x \vee t) \in J$, thus $(x \vee t) \sim_{I} (y \vee t)$. Similarly $y \wedge t = (x \in J) \wedge t = (x \wedge t) \in (J \cap t) = (x \wedge t) \in J'$, i.e. $(y \wedge t) \sim_{I} (x \wedge t)$.

The proof is finished.

The most important special case in the last definition is I = (b). We shall write in this case τ_b instead of $\tau_{(b)}$.

<u>Proposition 2.</u> Let L be a finite lattice, b \in L an f.c. element. Then the congruence τ_b is an atom in C(Sub (L)).

<u>Proof.</u> By Lemma 2 any congruence $\Theta \neq \varepsilon$ which is contained in α_b , contains [0,c] for some $c \in L$. By the defini-

tion of τ_b we have c = b, which implies that the congruence $\theta \in \tau_b$ is necessarily such that $(b) = \emptyset(\theta)$.

Further, by Lemma 3 and by definition, α_b is the smallest of all congruences for which (b) $\equiv \ell$, so that $\theta = \alpha_b$.

<u>Corollary 1</u>. Let L be a finite lattice. Sub (L) is subdirectly irreducible iff card L=1.

<u>Proof.</u> Since every finite lattice L, card L \geq 2 has $0 \neq 1$, the assertion follows from the last proposition.

Now, we shall convert Proposition 2 and show that any atomic congruence on Sub (L) has the form of κ_b for an f.c. element b ϵ L.

Theorem 1. Let L be a finite lattice. Then there is one-to-one correspondence between f.c. elements of L and atomic congruences on Sub (L); to an f.c. element b corresponds the congruence τ_b described above.

<u>Proof.</u> Let $\varphi + \varepsilon$ be a congruence on Sub (L). By Lemma 2 there is $b \in L$ such that $(b) \equiv p(\varphi)$. If b is an f.c. element, then by the proof of Proposition 2 $\varepsilon_b \subseteq \varphi$ and we are done.

If b is not fully comparable, there is $c \in L$ such that $A = (b,c,b \cap c,b \cup c)$ is a four element sublattice of L. Since $(b) \wedge (c) = \emptyset$ and $(b) \vee (c) = A$ we have $[\emptyset,b] \nearrow [c,A]$ in Sub (L).

We show that $(b \cup c) \equiv \emptyset$ (@).

Since $c \neq b \cup c$ we have $(c) \land (b \cup c) = \emptyset$ and $(c) \lor (b \cup c) = (c \uplus (b \cup c))_L = (c \uplus (b \cup c))$, thus $[\emptyset, b \cup c] \nearrow [c, c \uplus (b \cup c)]$.

Now (b) $\equiv \emptyset$ (φ) and $[\emptyset,b] \nearrow [c,A]$, hence $c \equiv A$ (φ).

Since (c)c(c $(b \cup c)$)c A and every congruence class is a convex sublattice, we obtain

 $c \equiv (c \cup (b \cup c))$ (φ) and thus, finally $(b \cup c) \equiv \emptyset$ (φ).

We shall distinguish two cases.

Case I. If buc is an f.c. element, then the congruence α_{buc} is an atom in C(Sub (L)), and since b \neq buc, it is necessarily $\alpha_{\text{buc}} = 0$. The proof is in this case finished.

Case II. If but is not comparable with $d \in L$ we repeat the previous consideration and obtain (but cud) = 0 (o). If but cud is an f.c. element of L, we are finished. If not, we continue analogously. Since L is finite, we finally obtain an f.c. element $k \in L$ such that the atomic congruence v_k is contained in o. The proof is finished.

Now we can describe a certain sublattice of C(Sub (L)) by using the atoms $\ensuremath{\tau_{h^o}}$

Theorem 2. Let L be a finite lattice, I the set of all f.c. elements of L, $(b_1, \ldots, b_m) = J \subseteq I$. Then in C(Sub (L))

Proof. We denote the congruence on the left hand side by Θ . Let Φ be a congruence such that $\Phi \supseteq \pi_{b_1}$ for $i = 1,2,\ldots,m$. Let $\pi_J y$. Then there is $J \subseteq J$ such that $\pi_J y = (\pi \land y) \bowtie J'$. Suppose $J = (b_{k_1}, \ldots, b_k)$, let $c_0 = \pi \land y$ and define $c_s = c_{s-1} \lor b_{k_s}$, $s = 1,2,\ldots,\ell$. Then $c_0 < c_1 < \ldots < c_\ell$ and $(c_{s-1},c_s) \in \pi_b \subseteq \Phi$. Thus by the transitivity of Φ $c_0 = (\pi \land y) \Phi (\pi \lor y) = c_\ell$. By Lemma 1 $\pi \Phi y$; thus $\pi_J \subseteq \Phi$ and, consequently $\pi_J = \Theta$.

<u>Corollary 2</u>. Let L be a finite lattice, I the set of all f.c. elements of L, card L = n. Then C(Sub (L)) contains as a sublattice the Boolean lattice 2^n having ϵ as the smallest element and τ_1 as the greatest one.

Now, it is easy to reformulate our results as necessary conditions for a finite lattice L to be L = Sub (L').

Let I denote the set of atoms of L the union of which with any different atom is of height 2. Let card I=n.

- L is subdirectly reducible or card L = 2.
- 2) All atoms in C(L) are exactly the congruences τ_b (where b ϵ I) defined by b \equiv 0. The element b is the only element of L identified with 0 by the congruence τ_b .
- 3) The lattice C(L) contains a Boolean lattice 2^n as its sublattice. This lattice has ε as the smallest element and τ_b ; be I are exactly all its atoms.

Reference

[1] G. GRÄTZER: Lattice theory: First concepts and distributive lattices, Freeman, San Francisco 1971.

V Ú S T E Velflíkova 4, 16000 Praha 6 Československo

Oblatum 16.6. 1977)