

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log56

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,3 (1977)

ON A CLASS OF NON-ASSOCIATIVE RINGS

Tomáš KEPKA, Praha

Abstract: Rings satisfying the identities x.yz = xy.xz and yz.x = yx.zx are investigated. It is shown, among others, that these rings are direct sums of idempotent rings and rings which are nil-potent of degree three.

Key words: Ring, quasifield.

AMS: 17E05 Ref. Z.: 2.723.5

In [1], M. Petrich has described associative distributive rings. Such rings are direct sums of boolean rings and of rings nilpotent of degree three. In the present paper, there is shown that a very similar result is valid in the non-associative case. Moreover, finite distributive rings are completely described.

4,

- 1. <u>Introduction</u>. A ring R (possibly non-associative) is called
- distributive if it satisfies the identities x.yz = xy.xz and yz.x = yx.zx,
- medial if it satisfies the identity xy.uv = xu.yv,
- idempotent if it satisfies the identity x = xx,
- nilpotent of degree three if it satisfies the identity x.yz =
- = uv.w,
- quasiboolean if it is idempotent and distributive,

- a quasifield if the set R \ {0} is a quasigroup,
- a quasidomain if $ab \neq 0$, whenever $a,b \in R \setminus \{0\}$,
- a division ring if for all a, b \in R, a \neq O, there are c, d \in R with ac = b = da,
- a field if it is a commutative and associative quasifield.

Further, R is said to be of characteristic two if R satisfies the identity x + x = 0. If moreover, the mapping $a \longrightarrow a^2$ is a permutation of R then we shall say that R is perfect. The inverse permutation will be denoted by $\sqrt{}$.

The following lemma is obvious.

- 1.1. Lemma. (1) Every idempotent ring is commutative and of characteristic two.
- (ii) Every quasiboolean ring is commutative and of characteristic two.
 - (iii) Every boolean ring is quasiboolean.
- (iv) Every ring which is nilpotent of degree three is associative, distributive and medial.
- (v) A ring R is nilpotent of degree three iff it is associative and abc = 0 for all a,b,c∈R.
- (vi) If R is a perfect field of characteristic two then the mapping $a \longrightarrow a^2$ is an atomorphism of R.
- (vii) A ring R is a quasidomain iff the set R \smallsetminus 40 } is a cancellation groupoid.
- 2. Basic properties of distributive rings. The following lemma is clear.
- 2.1. Lemma. Let R be a distributive ring and $a \in R$. Then the mappings $b \longrightarrow ab$ and $b \longrightarrow ba$ are endomorphisms of R.

If R is a ring then Id R denotes the set of all idempotents of R. Id R is non-empty, since $O \in Id R$.

2.2. Lemma. Let R be a distributive ring. Then a.aa = $= aa.a \in Id R$ for every $a \in R$.

Proof. We can write aa.a = aa.aa = a.aa and aa.aa = = (a.aa)(a.aa) using the distributive laws for the multiplication of R.

2.3. Lemma. Let R be a distributive ring, at Id R and b \in R. Then ab, ba \in Id R.

Proof. We have ab.ab = aa.b = ab, and hence ab ϵ Id R. Similarly ba ϵ Id R.

2.4. Lemma. Let R be a distributive ring. Then a.bc ϵ ϵ Id R and ab.c ϵ Id R for all a,b,c ϵ R.

Proof. Using distributive laws, we obtain the equalities a.bc = ab.ac = (ab.a)(ab.c) = (aa.ba)(ab.c) = = ((aa.a)(aa.b))(ab.c). However, aa.acId R by 2.2, and consequently a.bccId R, as it follows from 2.3. Similarly ab.ccId R.

2.5. Lemma. Let R be a distributive ring. Then a + a = = 0 for every a \in Id R.

2.6. Lemma. Let R be a distributive ring. Then c.ab = c.ba and ab.c = ba.c for all a,b,ce Id R.

Proof. We have ca + cb + c.ab + c.ba = c(a + b + ab + ba) = c((a + b)(a + b)) = (c(a + b))(c(a + b)) = (cc)(a + b) = ca + cb, and therefore <math>c.ab + c.ba = 0. But $c.ab \in Id R$

by 2.4, and hence c.ab + c.ab = 0 by 2.5. Now we see that c.ab = c.ba. Similarly we can prove the other equality.

2.7. Lemma. Let R be a distributive ring. Then ab = ba for all $a,b \in Id$ R.

Proof. The elements ab, ba belong to Id R by 2.3. Using 2.6, we get ab = ab.ab = ab.ba = ba.ba = ba.

2.8. Lemma. A ring R is nilpotent of degree three iff it is a distributive ring and Id R = 0.

Proof. Apply 1.1(iv) and 2.4.

- 2.9. Proposition. Let R be a distributive ring. Then:
- (i) Id R is an ideal of R.
- (ii) Id R is a quasiboolean ring.
- (iii) The factorring R/Id R is nilpotent of degree three.

Proof. (i) Let $a,b \in Id R$. Then ab = ba and ab + ba = 0 by 2.5 and 2.7. Hence $(a + b)^2 = a + b + ab + ba = a + b$ and so $a + b \in Id R$. Further, -a = a and $0 \in Id R$. We have proved that Id R is a subgroup of the additive group. The rest follows from 2.3.

- (ii) is clear and (iii) is an easy consequence of 2.8.
- 2.10. Lamma. Let R be a distributive ring. Then ab = ba for all $a \in Id R$ and $b \in R$.

Proof. We can write ba = b(a.aa) = (ba)(ba.ba) = = (b.bb)a = a(b.bb) = (ab)(ab.ab) = (a.aa)b = ab, since a,b, bb = Id R and Id R is commutative.

2.11. Lemma. Let R be a distributive ring. Then a.ba = aba for all $a,b \in \mathbb{R}$.

Proof. By 2.4, ab.a \in Id R. Hence a.ba = ab.as = (ab.a)(ab.a) = ab.a.

2.12. Lemma. Let R be a distributive ring. Then a.ab = $a \cdot ba = ab \cdot a = ba \cdot a$ for all $a, b \in \mathbb{R}$.

Proof. aa.a,aa.b \in Id R and Id R is commutative. Hence a.ab = aa.ab = (aa.a)(aa.b) = (aa.b)(aa.a) = aa.ba = ab.a . Similarly ba.a = a.ba. But a.ba = ab.a by 2.11.

2.13. Lemma. Let R be a distributive ring. Then aa.b = a.bb = b.aa = bb.a for all $a,b \in R$.

Proof. We have b.as = ba.bs = bb.a and aa.b = a.bb.

Further, bb.a = (bb.a)(bb.a) = (bb.bb)a = (b.bb)a, since $bb.a \in Id R. By 2.10, (b.bb)a = a(b.bb). Hence bb.a = a(b.bb)=$ = a(bb.bb) = (a.bb)(a.bb) = a.bb.

Let R be a distributive ring. We denote by f the mapping of R into R defined by $f(a) = a \cdot aa$ for every $a \in R$. As we know, $f(a) = aa \cdot aa = aa \cdot a$.

2.14. <u>Proposition</u>. Let R be a distributive ring. Then f is an endomorphism of R, f(R) = Id R and f(a) = a for every $a \in Id R$. Moreover, $f^2 = f$.

Proof. Let $a,b \in \mathbb{R}$. Then f(a + b) = a.aa + a.bb + a.ab + a.ba + b.aa + b.bb + b.ab + b.ba. However, a.bb + b.aa + + b.ba + b.ab + a.ab + a.ba = 0, as it follows from 2.4, 2.5, 2.11, 2.12 and 2.13. Hence <math>f(a + b) = f(a) + f(b). Further, f(ab) = (ab)(ab.ab) = a(b.bb) = af(b) = f(af(b)) = af(b)((af(b))(af(b))) = f(a)f(b), since af(b) belongs to Id R. The rest is clear.

If R is a distributive ring then we put $A(R) = \{a \in R \mid f(a) = 0\}$.

2.15. Proposition. Let R be a distributive ring. Then:

- (i) A(n) is an ideal of R.
- (ii) A(R) is isomorphic to the ring R/Id R.

- (iii) A(R) is nilpotent of degree three.
- (iv) $A(R) \cap Id R = 0$ and A(R) + Id R = R.

Proof. (i) follows from 2.14, since $A(R) = \ker f$ and (ii) is an easy consequence of (iii).

- (iii) The equality $A(R) \cap Id R = 0$ is evident. Further, if $a \in R$ then $f(a f(a)) = f(a) f^2(a) = f(a) f(a) = 0$, $a f(a) \in A(R)$ and $f(a) \in Id R$. However a = a f(a) + f(a).
 - 2.16. Theorem. Let R be a distributive ring. Then:
 - (i) Id R and A(R) are ideals of R.
 - (ii) Id R is a quasiboolean ring.
 - (iii) A(R) is nilpotent of degree three.
 - (iv) R is the direct sum of Id R and A(R).

Proof. Apply 2.9 and 2.15.

- 2.17. <u>Corollary</u>. Every distributive ring is isomorphic to the cartesian product of a quasiboolean ring and of a ring which is nilpotent of degree three.
- 2.18. <u>Corollary</u> ([1]). Every associative distributive ring is isomorphic to the cartesian product of a boolean ring and of a ring which is nilpotent of degree three.
 - 2.19. Proposition. Every distributive ring is medial.

Proof. With respect to 2.17 and 1.1 (iv), we can assume that R is idempotent. Let a,b,c,d \in R. We can write ad.b + ad.c = (ad)(b + c) = (a(b + c))(d(b + c)) = (ab + ac)(db + dc)= ab.db + ab.dc + ac.db + ac.dc = ad.b + ab.dc + ac.db + ad.c . Hence ab.dc + ac.db = 0, and so ab.dc = ac.db . How-

ever. R is commutative and ab.cd = ab.dc = ac.db = ac.bd.

3. Distributive quasidomains

3.1. Lemma. Every distributive quasidomain is idempotent.

Proof. Let R be a distributive quasidomain and $0 + a \in R$. Then a.aa = aa.aa and aa + 0. With respect to 1.1 (vii), a = aa.

3.2. <u>Proposition</u>. Every subdirectly irreducible quasiboolean ring is a quasidomain.

Proof. Let R be a non-trivial subdirectly irreducible quasiboolean ring. Then R contains an ideal L which is the smallest non-zero ideal. Let a, b \in R \setminus {0} and ab = 0. Put I = {c \in R | ac = 0}. Then I is a non-zero ideal and L \subseteq I. Hence La = 0. Let K = {d \in R | Ld = 0 }. Again, K is a non-zero ideal and L \subseteq K. Then L = L² = 0, a contradiction.

An ideal I of a commutative ring R is said to be prime if the ring R/I is a quasidomain. The ring R is called semi-prime if the intersection of all prime ideals of R is equal to zero.

3.3. Lemma. Let R be a subring of a quasiboolean quasidomain S, I be a prime ideal of R and $a \in R \setminus I$ be an element. Suppose that $aS \subseteq R$. Then $I = K \cap R$ for some prime ideal K of S.

Proof. Put $K = \{b \in S \mid ab \in I\}$. It is easy to see that K is a prime ideal of S and $K \cap R = I$.

3.4. Lemma. Let R be a quasiboolean quasidomain and $C \neq a \in R$. Then there exists a quasiboolean quasidomain S such that R is a subring of S and aS = R.

Proof. Let g(b) = ab for every $b \in R$. Then g is an injective endomorphism of R and g(R) is isomorphic to R. Clear-

ly, aR = g(R). Now we can identify R with g(R) and S with R.

3.5. <u>Corollary</u>. Every quasiboolean quasidomain is a subring of a quasiboolean quasifield.

Proof. Apply 3.4 and some usual constructions.

3.6. <u>Proposition</u>. Every quasiboolean ring is semiprime. Proof. This assertion is an easy consequence of 3.2.

4. Distributive division rings

4.1. Lemma. Every distributive division ring is idempotent.

Proof. Let R be a distributive division ring and $0 \neq a \in \mathbb{R}$. There is $b \in \mathbb{R}$ such that a = ab. Then a = ab. $b \in \mathbb{R}$ and $a \in \mathbb{R}$ Id R by 2.4.

A ring R is said to be simple if O and R are the only ideals of R. It is clear that every division ring is simple.

4.2. Lemma. Every simple quasiboolean ring is a quasi-domain.

Proof. Let R be a simple quasiboolean ring and ab = 0 for some $0 \neq a, b \in R$. Put $I = \{c \in R \mid ac = 0\}$. If $c \in I$ and $d \in R$ then a.cd = ac.ad = 0.ad = 0 and we see that I is an ideal. But $b \in I$ and I = R. Consequently $a \in I$ and a = aa = 0, a contradiction.

4.3. <u>Corollary</u>. Every distributive division ring is a quasiboolean quasifield.

Let R be a perfect field of characteristic two. Put $a*b = \sqrt{ab}$ for all $a,b \in R$. Then a*(b+c) = a*b * a*c, (b+c)*a = b*a + c*a for all $a,b,c \in R$ and we see that R(*) is a ring having the same underlying group as R. More-

over, as one may check easily, R(*) is a quasiboolean quasifield. On the other hand, every quasiboolean quasifield can be obtained in such a way.

4.4. Theorem. Let R(*) be a quasiboolean quasifield. Then there exists a perfect field R of characteristic two such that R has the same additive group as R(*) and a*b = \sqrt{ab} for all a,b \in R.

Proof. Let $j \in \mathbb{R} \setminus \{0\}$ and g(a) = a * j for every $a \in \mathbb{R}$. Then g is an automorphism of $\mathbb{R}(*)$. Put $ab = g^{-1}(a * b)$. Then $a(b+c) = g^{-1}(a * (b+c)) = g^{-1}(a*b) + g^{-1}(a*c) = ab + ac$. Further, $aj = g^{-1}(a*j) = g^{-1}g(a) = a$ and $aa = g^{-1}(a*a) = g^{-1}(a)$. Hence \mathbb{R} is a commutative ring with unit, the mapping $a \longrightarrow a^2$ is a permutation of \mathbb{R} , $a*b = \sqrt{ab}$ and a*a = 0 for all $a,b \in \mathbb{R}$. Moreover, it is easy to see that \mathbb{R} is a quasifield. Now it remains to show that \mathbb{R} is associative. For, let $a,b,c \in \mathbb{R}$. Then $a.bc = g^{-1}(a*g^{-1}(b*c)) = g^{-1}(a)*(g^{-2}(b)*g^{-2}(c)) = g^{-1}(g^{-1}(a)*g^{-1}(b))*g^{-1}(c) = ab.c$ by 2.19.

5. Finite distributive ringe

5.1. Theorem. Every finite distributive ring is isomorphic to the cartesian product of a finite number of quasiboolean quasifields and of a ring which is nilpotent of degree three.

Proof. Let R be a finite distributive ring. With respect to 2.17, we can assume that R is a quasiboolean ring. Since R is finite, R is a direct sum of directly indecomposable rings. Suppose that R is directly indecomposable. As it is

easy to see, every finite quasidomain is a quasifield. Hence every prime ideal of R is a maximal ideal. If I, K are non-zero ideals of R, I is a maximal ideal and $I \cap K = 0$, then R = I + K and R is the direct sum of I and K, a contradiction. Now it follows from 3.6 that R is a quasidomain.

5.2. <u>Corollary</u>. Every finite associative distributive ring is isomorphic to the cartesian product of a finite number of two-element fields and of a ring which is nilpotent of degree three.

Reference

[1] M. PETRICH: Structure des demi-groupes et anneaux distributifs, C.R. Acad. Sci. Paris 268, A849-A852

Matematicko-fyzikální fakulta Karlova universita Sokolovaká 83, 18600 Praha 8 Československo

(Oblatum 1.4. 1977)