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Lusin-Menchoff property. Let (P,@) be a topological spa-
ce. Considering on P another topology & finer than @ which
will be called the "fine topology", we can state the follow-
ing main theorem (the topological notions referring to the % -
topology will be qualified by the prefix o to distinguish them
from those pertaining to the topology @ )e

Theorem 1. The following assertions are equivalent:

(1) Given any pair of disjoint subsets F,F, of P, F clo-
sed, F, <« -closed, there are G,G, ¢ P, G open,G, < -open
such that

F,c G, FcG, , GNG, = 3.
(11) For any couple Fyc U of P, £, < -closed, U open,
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there is an open set Gc P such that F,.5 c GeG%c U,

(i11) For any couple Fc Uy » F closed, Up @ -open, the-
re is a T -open set ., such that F c 2, ch cu,.

(1v) Given any pair of disjoint subsets FyF, of P, F
closed, Fo, % -closed, there is a = -continuous and upper-
semicontinuous function £ on P such that

Oéfél,f=00nF,z,f=lonF.

Proof. Obviously, (i),(ii) and (iii) are equivalent, and
(1v) implies (1), Assuming (1), the construction of £ is simi-
lar to that of Urysohn’s lemma (see L91, Chap. IV, Lemma 4),
80 we can sketch it only. Let D be the set of positive dyadiec
rationals. For te D, t>1 we put F(t) = P, let F(1) = P\ F,
and let F(O) be any open set containing F, whose ~ -closure
is disjoint with F. By induction we associate with any
t € (0,1)n D an open set ¥(t) in such a way that

t<s, t,8€(0,1)n D == F(t)c F(t) < F(s).

Putting f£: x —> inf{ t; xe F(t) % s £ has all desirable pro-
perties. It is <« -continuous ([91, Chap. IV, Lemma 3) and,

moreover, it is upper-semicontimious since
i{xeP; f(x)< e} = ULF(t); teD, t<ec?.

Obviously,

O4%f4£l onP, £ =0 on F

w o+ £=1onF.

D nit e We shall say that the topology = has the

Lugin-Menchoff property (with respect to ® ) if any of the

equivalent assertions of Theorem 1 is satisfied. Of course,
if = = ® then the Lusin-Menchoff preperty is equivalent
to the normality of the space (Py2x). Generally, a topolcgy
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with the Lusin-Menchoff property need not be normal.

Remark. In the setting of bitopological spaces of J.C.
Kelly (Proc. London Math. Soc. (3)13(1963), 71-89) the Lusin-
Menchoff property of the fine topology & with respect to

topology @ means nothing else as the pairwise normality of

the bitopological space (P, , ®)e

In what follows, given a function £ on P, Z(f) stands
for the zero set of £, i.e. Z(f) ={xeP; £(x) = 0} . As usu-
al, R will be the set of reals.

Corollary 2. Suppose that the topology * has the Lu-
sin-Menchoff property. Then:

(a) % is completely regular;

(b) If @ 1s a metric topology, then %= is cometrizable
(topologicsl space (P,% ) is cometrizable if there is a metric
topology ® on P coarser than @ such that each point of P
has a neighborhood base in (P,z ) the elements of which are
@ ~closed);

(¢) For any closed set F and for any < -open set (e A
FcG, , there is a <« =-cozero set C, Fc CcGy ;

(d) For any = -closed set F, and for any set G of ty-
pe Gy y Fpo© G, there is a < -continuous and upper-semi con=-
tinuous function £ on P such that Fp c 2(£f)c G;

(e) (Zahorski property of * ) Any « -closed set of ty-
pe Gy~ is zero set of a =« -continuous and upper-gsemiconti-
nuous function on P;

(£) Any pair of disjoint -~ -closed sets of type Gy can

be separated by T ~-cozero sets.
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Proof. The proofs are immediate consequences of Theorem
(=
1. ch (@), 1£G = 1,6, G, open, it is sufficient to put
£ =n$4 Z-nfn, where £, are constructed as in Theorem 1 for
Fy
sed sets of type G4 , and fA’fB are < =-continuous functions
on P, Oéfa,fBé 1, Z(fA) = A, Z(fB) = B, We put
= . 1 = .

g = fA/(fA +£5), C, =4xeP; @(x)< £ $ , g =ixeP; glx)>

end P\ G, . For (£), assume that A,B are disjoint ~ -clo-

> ‘;'_‘ f . Then CA’cB are disjoint <« -cozero sets containing
A,B, respectively.

Remarks. (1) Let @ be a metric topology on P. Assume
that eny @ -continuous function on P is of Baire class 1 (mo-
re on this subject can be found in [131). Then any = -zero
set i1s < -closed and of type Gy » Zahorski property for <
states the converse assertion, and thus = -zero sets are com-
pletely described. Moreover, the function in question can be
chosen to be upper=-semicontinuous.

(2) Assume that the topology © on P has the Lusin-Men-
choff property with respect to @ . Putting

® ={f; £ is non-negative 2 =-continuous and lower-se-

micontimious function on P},

® 1is a convex cone on P, The coarsest topology 1:4’ on P
finer than @ making all functions from § continuous is ex-
actly © . Indeed, let U be 7 =-open, x€U, There is £, 0% f<
£1,1~-fed such that
£(x) =1, P\Uc2(f).
Then
xe{yeP; 1 -f(y)<-4£} c U,
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On the other hand, =« is obviously finer than TH - Thus
the topology with the Lusin-Menchoff property is the fine
topology assoéiated with the cone ¢ 1in the sense or M. Bre-
lot [ 2] and has all corresponding properties. In particular,
we obtain the following corollary immediately (see [ 21, Theo-
rem I,4).

Proposition 3. If ¢ has the Lusin-Menchoff property
with respect to a locally compact space (P,@), then (P,z)

is a Baire space.

Tietze s type extension theorem. The classical Tietze s
theorem on extension of continuous functions from closed sub-
gsets of topological normal space can be transferred in more
general situations. Let us mention just the principle of qua-
gi-normality of the fine topology in potential theory (gee
Fuglede [61), or the extension theorem from Lebesgue null sets
resulting in approximatively continuous functions (see Petrus-
xa and Laczkovich [11)). We shall not examine the connection
between the Lusin-Menchoff property and the Tietze's type ex-
tension theorem, we state the following simple theorem only.

Theorem 4. Assume that T has the Lusin-Menchoff pro-
perty with respect to a metric topology @ . Let F bea -
closed subset of P, and £ be a % =continuous [bounded] func-
tion on F being a restriction on F of a function of Baire
class one. Then f has @ -continuous [ bounded] extension f¥
to the whole space P. Moreover, £* 1s of Baire class one.

Proof. The proof is a slight modification of the classi-
cal proof of the Tietze s theorem. Assume -1& £€&1 on Ff. Let
G be a function of the first class of Baire on P which extends
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f. We put

Gy ={xeP; G(x)& - i ol ={xeP; G(x)2 —;-f,

F) =4{xeF; £flx)£ - =3 ,Fl ={xeF; f(x)Z % .

ul-\ ul..

w(-~

By Corollary 2.d there is a = =continuous function Py of

Baire class one on P, -% £ 9, % -%- y 9 =—% on F,,

%1 =—;— on Fl. As usual, setting £, =¢f - ¥, on F we re-

peat the process.

Lipits of fipgely continuous functions

Theorem 5. Let (P,go) be a metric space, and let = be
a topology on P finer than @ satisfying

(1) the Lusin-Menchoff property,

(11) any set of type Fg (1n$b ) is of type Gy inz .
Then any function (possibly infinite) of the seeond class of
Baire on P is the limit of a sequence of T =-continuous func~
tions.

Broof. It is known that a function £ is the limit of a
sequence of T =-contimuous functions (i.e. f belongs to the
first class of Baire in the topology = ) if and only if for
eny real c, the sets {xeP; £(x)2 ¢} yi{xeP; £(x)& ¢} are
the countable intersections of =< -cozero sets. Thus, it is
sufficient to prove that any set.of type Pg 1s the countable
intersection of € =cozero sets. Let F be such a set of type
Fg o Using (11), there are <« -open sets G, such that F =
=mfe:\4 G Fix now a natural n. There are closed sets F", F =
=5g4 F‘j. For any j we can find < -cozero set Cg such that

(4

FJcCJcG Then F = N, O (‘.“'j and C) C‘1 is < =-cozero
n--n° 14%=4 “n? 3451 %n

m=

set. The proof of Theorem 5 is now straightforward.
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Bemark. If any < -continuous function on P is of the
first class of Baire and the assumptions of Theorem 5 are sa-
tisfied, then the set of all functions of the second class of
Baire coincides with the set of all functions which are in
the < -topology of the first class of Baire.

Density topology. Let us consider the usual ordinary
gggglgx_gggg;ggx on an euclidean space R? (the ordinary den-
sity topology is formed by measurable sets having any of its
points as a point of ordinary density; approximately continu—
ous functions are exactly functions continuous in this topo—
logy. See, e.g., [8]). The history of discovery of the Lusin—
Menchoff property is interesting. It seems that the first at-
tempt is due to V.S. Bogomolova 1924 (Sur une classe des fone-
tions asymptotiquement continues, Matem. Sbornik 32(1924),152-
171, Russian with french summary). She writes word for word:
"Les théorémes sur les points d épaisseur étaient démontrés
d“abord par M. N.N. Lusin et M. D.E, Menchoff. N ayant aucune
idée de leur méthode J'ai obtenu quelques Jours plus tard une
autre démonstration". The generalization of the results of Ve
Bogomolova can be found in the paper of I. Maximoff 1940,[15].
In [8] the proof of the Lusin-Menchoff property is simplified
and generalized to R™. We must underline that in these papers
the obtained results are a little deeper than the Just defined
Lusin=Menchoff property. '

Thus, the density topology has the Lusin-Menchoff proper-
ty. Moreover, any Borel set in density topology is of type Gu~
in this topology. Indeed, any density-Borel set is Lebesgue
measurable, so it is of the form G\ N, where G is of type G~
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and N has Lebesgue measure zero. It follows that any such a

gset 1s Gy in density topology. Of course, any continuous func-
tion in the density topolegy is of Baire class one (ef. L 13)),
thus our Theorem 5 gives the following theorem which was pro-
ved by D. Preiss 1971, [16], and independently by G. Petruska
and M. Laczkovich 1973, [ 101.

Theorem. Any function (possibly infinite) on R® 1s of
the second class of Baire if and only if it is the limit of a
sequence of approximately continuous functions.

There are variety of mathematical papers devoted the stu-
dy of the approximate continuity and of the density topology
beginning with the significant investigation by A. Denjoy in
1915, The summary of the most important facts about the densi-
ty topology is collected in the recent paper of F.D. Tall 1976,
[18]. We add simple remarks only.

It is not difficult to prove that the Borel subsets of
the real line in the density topology are precisely the Lebes-
gue measurable sets. Further, the rare (= nowhere dense) sub-
sets in density are always closed, and coincide with the Lebes-
gue null sets. These observations lead easily to another proof
of the classical result of A. DenJjoy.

Theorem (Denjoy). A real function onRR is Lebesgue mee=
surable if and only if it is approximately continuous almost
everywhere.

! Proof. In density topology, the meagre sets (= sets of
first category) are closed. Therefore, the Borel sets coincide
with almost open sets ( = sets with the Baire property). It
follows that £ is a Borel function in density topology if and
only if it is almost open (= measurable with respect to the
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system of all almost open sets), and this is the case if and
only if there is a mull set N ¢ R such that the restriction
of £ to R \ N is approximately continuous. Thus, a func-
tion £ is Lebesgue measurable iff it is approximately continu-
ous almost everywhere (i.e. approximately continuous on a den-

sity-open set R\ N.

The previous considerations are closely related to many
constructions of functions with required properties. As a sim-
ple application only, we draw the attention to the so=-called
"functions of Pompeiu" whose lengthy and detailed study can
be found in S. Marcus 1963, [14]. Some questions raised there
were answered in the papers of A. Bruckner 1863, [ 3] and of
J.S. Lipinski 1963, [12]. Using the Extension theorem 4 we are
able to construct the simple counterexamples as well. (It
seems that the similar problems motivated the investigation of
Petruska and Laczkovich.)

(a) Let A be a countable dense subset of R containing
0 disjoint with B = {n-l; n natural ¥ . There is a bounded ap-
proximately continuous function f such that Ac z(f), £ =1 on
B. Thus, at the point Oe Z(f) the function f is not continu-
ous.

(b) Assume that Aj,A,,A; ere disjoint, dense, countable
subsets of R . There is a bounded approximately continuous
function f such that

Ajc Z2(£), a,cixeR ; £f(x)>0%, A3c§xeR; f£ix)<o03%.

(It is sufficient to prescribe the values of f at the points
of Al,Az,A3 as follows:
£(x) = 0 1f xe Ay, £(ad) = (-1)*n7Y,
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1f Ay ={al,83,000 8, 1 = 1,2.)

The primitive of £ on R is thus the example of function which
is differentiable everywhere and nowhere monotone.

Remark. There are some generalizations of the Lusin
Menchoff theorem in more general setting (see, e.g., [41), On
the other hand, the so-called strong density topology intro-
duced in [8] has not the Lusin-Menchoff property.

Scheinberg’s U-Topologies. In Scheinberg’s paper [171],

1971 the density topology on the real line was strengthened
to extremally disconnected topologies using ultrafilters on
the collection of sets of positive Lebesgue measure. More pre-
cisely, let U be an ultrafilter in the family of all measu-
rable subsets of R containing the filter of all measurable
sets having the density 1 at the point 0. A set 4 is & W -
neighborhood of O if A contains some member of U . By trans-
lation of Y we define 9 -neighborhoods of any point in R .
In [19], F.D. Tall asked for the cometrizability of the Y -
topology. The answer is contained in the following theorem.

Theorem 6. The W -topology has the Lusin-Menchoff pro-
perty (with respect to the euclidean topology on R ).

Proof (the idea is due to L. Zaji&ek): Given a closed
set Fc R and a Y -closed set Foc R |, it is sufficient
to construct an open set G containing F, 1in such a way that
any point of F is point of dispersion of GN\F,_ . Indeed, then
the closure of G\ F, in the density topology is disjoint with
F, and therefore the Y -closure of G does not meet F.

Let i(an,bn)i be the sequence of all contiguous inter-
vals of F. Put
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*p=a,if a, e R , and Cp=b,-1if ay = -0,

Bn=bpifb,eR , and Ra

an+lifbn=+ao,

g= 1 (xp+ ).

For positive integers k define points c§ by the relation
k-1 k _ k-1 _
¢h ~ ¢y = ﬁli+_1 (°n °°n)’

Obviously, clr‘1 ™ oo For negative integers k define cg in such

a way that cg would be the center of the segment cnk, ci’: .

It is easy to see that there is an open set G containing Ejz
such that

@llemep Dnlenr, )

o1 Tk < o+ for positive k,
n n

and
@((E* 5 A (G\F., )
= - £ < L for ative k

ck_ck*‘l n+lK| neg .
n~ °n

If x& (o), 3.), choose § such that x e [cg+1,cg).
Then

X - °‘n cgﬂ' - ‘ﬂ
@lened™hn(GNE, ) of - oJ* L2

e + &£— .
°i’1+l T %n °gﬂ T %n ;

Similarly, if m is a positive integer and j>m, then

@((e ,x)n (GN\ Fp) 2
(e ) x = €5

Now, any point xe F is a point of dispersion from the right

of G\ F, + This follows easily from (%% ) in the case x = a,
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for some n, and from (% ) in the opposite case. Using sym-
metry of our construction, any point xe F is in fact a point

of dispersion of G‘\Fz « The proof is complete.

In [171 it is proved that the 49f-Borel sets coincide
with the Lebesgue measurable sets, and that a set is 4L -rare
if and only if its measure is zero. The same observations as
above give the following result,

Theorem. A real function on R is Lebesgue measurable if
and only if it is 9 -continuous almost everywhere.

Remark. The important theorem from [17] asserts that any
bounded measurable function is almost everywhere equal to a
unique determined 9-continuous function. Thus, it is easy
to see that the 49U-topology serves an example of "fine" to-
pology in which not every @L-continuous function is of the

first class of Baire.

ine lo i enti theory. In this section, X
will denote an abstract 13-harmonic space with countable ba-
se in the sense of the axiomatics C. Constantinescu and A.
Cornea. For all notions we refer to [51. The fine topology on
X is defined as the coarsest topology on X which is finer
than the initial topology and which makes any hyperharmonic
function on X continuous. The fine topology is always comple=-
tely regular, and X endowed with the fine topology is a Baire
space. On the other hand, the fine topology has many patholo-
gical properties - it is seldom metrizable, generally, it is
neither normal nor Lindelof, it has not the Blumberg proper-—
ty. Recently, B. Fuglede 1974, L71 proved that any finely con-

tinuous function on X is of the Baire class one (the simpli-
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fied proof of this fact can be found in [131). Hence, fine-
zero sets are fine closed and of type G, . Conversely, we
shall show that the fine topology (under certain restricted
assumptions) has the Zahorski property. Even, it has the Lu-
sin-Menchoff propertye.

Theorem 7. If the gxiom of polarity holds on X, then
the fine topology on X has the Lusin-Menchoff property.

Proof. Assume that F,Q are disjoint sets, F closed, Q
fine closed. First, we find a zero set Z of a finely contimu-
ous function such that Qc Zc X\ F. Denoting by b(A) the set
of all points of X where A is not thin, we have

Q=1b(Q) vIQg\b(Q)] .
If p is a finite, continuous strict potential on X, then

b(Q) ={xeX; ﬁg(x) = p(x)3 .

Obviously, ﬁg and p are finely continuous functions on X, and
P - ﬁg is upper-semicontinuous. Therefore, b(Q) is a zero set
of a finely continuous and upper-semicontinuous functions The
set Q\ b(Q) is polar, so it is contained in a polar set P of
type G4 ([5), Corollary 7.2.3). We can suppose that Pc X\ F.
By a theorem of M. Brelot 1958 (cf. [51 , Exercise 6.2.1),
there exists a potential q on X which is + 2 on P and fini~-
te on X\ P. Then

P={xeX; -';—r - arctg q(x) =0¢,

and therefore P is a zero set of a finely continuous and upper-
semicont imious function £ on X, 0& £&1. Now, we put 2 = b(QJu
U P, If we denote by h the continuous function on X such that
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O0£h&l, h=0on F, h>0 on X\F,

then the function f£/f + h has all properties from Theorem 1.

Corollary (Zahorski property of the fine topology). If
the axiom of polarity holds on X, then the zero sets of fi-
nely continuous functions are exactly fine closed sets of ty-
pe Gy o

Remark. Even in the case of harmonic functions derived
from the Laplace equation, the Fg sets need not be of type
Gy in fine topology. Nevertheless, we shall show that in the
fine topology (under certain assumptions) any fine closed sub-
set of X is of type Gy in this topology. We restrict to har—
monic spaces only in which the gxiom of thinnesg holds. This
axiom was introduced in the theory of harmonic spaces by Je
Bliedtner and W. Hansen 1975 (1] and says that any semi-polar
set is totally thin, i.e. it is thin at every point of X.

Proposition 8 (perfectness of the fine topology). If the
axiom of thinness holds on X, then any fine closed set is of
type Gy in the fine topology.

Proof. Let M be a totally thin subset of X. Using Corol-
lary 7.2.3 of [51, there is a totally thin set M* of type Gy
containing M. Let Gn be open sets such that m;':\,, Gn =M* ,
Since M*\ M is totally thin, M¥\ M is fine closed (L5, Co-
rollary 6.3.5). It follows that M =~54[ G, (M¥ N\ M)] is of
type Gy in fine topology. Now, let F be a fine closed subset
of X. So, F = b(F)u(F\b(F)). The set F\b(F) is semi-polar,
and, in view of the axiom of thinness, it is totally thin.
The set b(F) is always of type Gy .
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