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Abstract: An individual Abelian ergodic theorem is pro-
ved for a linear operator T on Ly of a-6-finite measure spa-

ce which satisfies certain boundedness conditions.
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Introduction. Derriemnic and Lin ([31) showed by an ex-
ample that given an ¢ > 0 there exist a positive linear
operator T on L, of a finite measure space, with T1 = 1 and
I Tnll =1+¢ forall nzl, and a function £ in L, such

that the individual ergodic limit
1 m-1 3
lin & 2, T £(x)
does not exist almost everywhere on a certain measurable sub-

set of positive measure. On the other hand, the author (L71)

has recently proved the following ergodic theorem.

Theorem A: Let T be a bounded linear operator on L, of
a finite measure space end T its limear modulus in the sense

of Chacon and Krengel (L21). Assume the conditions:
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ig 3wzt g
% ll;< o and e’:z‘pli‘bi‘.'.o'zﬂw<aa.

1 m-1
sup Il 7 .=y
Then, for every f in L, the ergodic limit

m-1 i
.2‘.0 T f(x)

=

Sl

lim
m
exists and is finite almost everywhere.

In connection with these results, it would be natural
to ask whether the almost everywhere existence of the limit
in Theorem A holds for every f in I.p with l<p< o0 , Un- l
fortunately, we do not know the answer even for T positive
and power bounded with T1 = 1 (see also [31). And this is
the starting point for the work in this pa«{er.

It will be observed below that if T is a bounded line-
ar operator on Ll of & & -finite measure space such that

R -
supliz =, T"ll,=< oo and also such that the adjoint of the

linear modulus & of T has a strictly positive subinvarient
function 8 in L., then for every 1< p<co and every f in

I.p, the Abelian ergodic limit

oo
Zum (1-a) 202 ex)

exists and is finite almost everywhere.

Abelian ergodic theorem. Iet (X,F ,w«) be a 6-finite
measure space and Lp((u-) = Lp(x,?‘,‘u-), l£¢p £ co , the usu-
al (complex) Banach spaces. Let T be a bounded linear opera-
tor on L,(w) and © its linear modulus. T* and =* will
denote the corresponding adjoint operators on Ll(‘u)* =
= L,(@). The following conditions (I) and (II) are assum-
ed throughout the remainder of the paper:
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(

) For some constant K21,

I
m-1
al\'x"pﬂ% i.%o Tlfllm < Klifl, for all fe L@ nly(e).

(II) There exists a function s in Loo((“') satisfying
X ={x:8(x)>0% and 2¥scs.

(We recall that T is a contractiom, i.e., ITll ;<1 if and

only if **1<1, and that if © satisfies
A £ m-1 5
1 % i . 1 i
sup 5 iE.o"t: I <o and l1m“supl\ii§.o’u £l ,>0

for every nonnegative £ in L;(w) with (£l ,>0, then the-
re exists a function s in L, with s>0 almost everywhere
on X and **s = s (cf. Corollary 2 of [61).

Since [Tl sdee [ (zlfhs au = [Ifle*s dus
flfls dw for all fe L;(«), and since L (@) is a dense
subspace of Ly(s dw) = Ly(X,5,s dew), T may be regarded as
a linear contraction operator on Ll(s d). Clearly, T on

L (s dw) satisfies

m-1
G:p"%*,'z‘o The| 2 KI£N, for all felj(s d@)n Ly (s dp).

Therefore, by the Riesz convexity theorem, T also may be re-
garded as a lirear operator on each I.p(s da), with 1€p <

< o0, such that

su <K,

m

el
- [

s
X

It then follows that sup I (1/n)7" Ilp< oo , and hence

1/n e
l’i'."m“'l'n“p £ 1. Thus, for every 0= A <1, =, AT is
a bounded linear operator on I.b(a d@), and it slso follows
<0
that, for every fe Lp(e de), m.?‘o AP™ITPE(x) < 0 for &l--

most all xe Xo
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Under these circumstances, we shall prove the following

theorem.

Theorem: For every 14 p<co and every fe Ib(s dum),
the limit

@
Slm (-2 = a e (x)

exists and is finite for almost all x € X.

For the proof of this theorem, we need two lemmas. The
Pirst one is a slight generalization of Chacon’s maximal er-

godic lemma ([11).

lemma 1: For every 1« p<co , every fe Lp(s d«) and

every constant a>0, we have

J

(
{F*>KRY
where £* is defined by

- mi B4 =
a - mim {1 £(x)),a}) a@emf"“uf(xn a) du,

A
£¥(x) = sup | -3‘-1- :g‘o The(x) | (xeX).

Proof: Since Chacon’s argument ([1]) can be easily mo-
dified to yield a proof of this lemma, we omit the details.

Lemma 2: For every lép< co and every fé Ib(a dw),
let

- «®
T = swp | -2 2, a e (x) | (xeX).

Then f(x)< o0 for almost all xeX.

Proof: Since there exists a w-null set N such that if
x ¢ N then

(-]
%E_lox‘\'l'nf(x) l< oo for all 0= A <1,
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we get, for all x ¢ N,

o0 0 .
1 -2),2, AP = (-2 S, ran 3, Pl

m<

) .
-2, S, el Aty F, T

since (1 -2 Sig (1) A7 = 1, it follows that F(x) & £* (x)
for all x ¢ N. Therefore it suffices to show that £¥* (x)< @
for almost all xe X.

To do this, we apply Lemma 1 and obtain, for every a>0,

3 @ ({£%> Cat-4121> 5D éﬁ‘*{‘@“}(a - min {1 £(x)|,a3)du

£(x)| - a) de -
# oheay (T - &) S

Thus, for every a>0, we have

5 @t*> Kad)e § wdiel> 3H + [ U@ - 8w
{I1fl>a}

£ | £(x)la
‘ -(H-‘\j;";'l R

and so, letting a —> ®@ , the desired conclusion follows.

Proof of the Theorem: For l<p< 0, I.b(s dm) is a

m-1

- : 1 i
reflexive Banach space. Then, since a’\’szlli- EOT |pg-x and

lim 1 (/)T I ] £ (sup /el P e L/l =0
m m

for all fe L(s du)nLy(s dm), it follows (cf£. Corollari-
es 5.2 and 5.4 in Chapter VIII of [4]1) that the set

L={g-Tg+ h:g, he (s d ) and Th = h}
L(s

is dense in I.b(s de).
We notice that if fe L, then the ergodic limit in the
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Theorem exists and is finite for almost all xe& X. In fact,
this follows from considering the case f = g - Tg, with g«
I..p(s dw). If this is the case, then we have for almost all
x€ X,

|(1-2) 2 A e | ¢ 0 -2)(le@)| + Tax)).

c0
Hence, by Lemma 2,‘“’}:{1’_0 1-2) =, A P1%2(x) = 0 for al-

most all xe¢ X.

By this and Lemma 2, we can apply Banach’s convergence
theorem ([41, p. 332) to infer that, for every fe Lp(s de)
with 1< p < o , the ergodic limit in the Theorem exists and
is finite for almost all xe X. Since L (s d(u—)nlb(ed @) is
dense in I (s dw), we can apply Lemma 2 and Banach’s conver-
gence theorem again to infer that, for every fe Li(s du),
the ergodic limit in the Theorem exists and is finite for al-
most all xe¢ X,

The proof is complete.

If we assume, in addition, that T is positive, then we
can apply the Chacon-Ornstein lemma ([51, p. 22) and obtain
that, for every fe L (s du), lf:i'.“n (1/n)T%f(x) = 0 for almost
all xe X. Therefore the above argument shows that, for every
l¢p< o and every fe Lb(a dw), the limit

m-1 .

e Y
lim & 2,71 (x)

exists and is finite for almost all xe X.
Although we do not know whether this result holds with-

out assuming that T is positive, the next proposition gives

a partial answer,



Propositiom: If X is countable, then for every lép <
< co and every f€ Lp(sd ¢+ ), the limit
T T
1% i
Hm g Zp T T
exists and is finite for almost all x¢& X,

Proof: Without loss of generality we may assume that
0< @w(ix})< o for each x & X. Let (k;) be any strictly in-
creasing sequence of positive integers, and take & subsequen-

ce (jn) of (kn) so that
-4
m§=‘.,|(1/;jn) < 00 .
Then, for all fe L(s dw), we have
© . ;jn
w2 (W NT Ny <
and hence
J
lim (1/§y)T "£(x) = 0
m

for all xe X. This and the argument used in the proof of the

Theorem imply that, for every 14 p < oo and every fe Lp(s dm),

the limit
é’n“ A
lim 3+ .5, THE(x)
m Jl’l 4=0

exists and is finite for all xe& X. We have now proved that
every strictly increasing sequence (kn) of positive integers
has a subsequence (j,) such that, for every l&p< co and e-
very fe Lp(s d ), the limit
1 W
lim = 2, T f(x)
m Jp ¥=0

exists and is finite for all xeX.
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Hence the Proposition follows from the mean ergodic theo-
rem for {<p< o
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