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ON THE STRICT CONVEXITY OF THE POLAR OPERATOR
Josef DANES, Prasha

_A_n?uﬂ= There is {rovad that the polar operator is
convex in eny linear topological space and strietly convex
in any separated locally convex space.
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The purpose of this note is to prove the following theo=
‘Tem.

Theorem. Let ¥ be a separated real locally convex space,
nz1l an integer, Al,...,xn nonempty subsets of X and tyjece
eeestp nonnegative numbers with 2;;1 ty = 1. Then

(=D, 8% (25, tyAD)y

The equality holds if and only if cocl (Aiu&oi ) =
= cocl (Ayud 031 ) for all 1, J with t %4> 0.

If X is a real linear topological space, ¥ a subset of
X and N & subset of the dual space x’, then co(M), cl(M),
coel(M) denotes the convex hull, closure and convex closed
hull of M, respectively, and MO =4x’e X': <Mx>Z1%,
P ={xeX: (x,N>&1} the polar ae.ta oi.’ M and. N, respecti-

vely (where, for example, ¢ I,x') & ] means that one is an
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upper bound for the set ¢ Myx > = {{ x,x"> : xeM${).

If X is a linear space and M a subset of X, then My
denotes the set U{CO0,x]1:[0,x)cM}={xeX:L[0,x)cM}
(C0,0) =403 ).

V.P. Fedotov [11 asserts that if AyyeeeyA, are closed
convex subsets of a real separated locally convex space X
containing the origin, then

Ay +ooo% Al ; A7 +...+ AD

o
n 2 n ) ’

the equality being true iff Al = see = An' It seems that his
consideration implies only that this inequality holds if the
left hand side of it is replaced by its closure (or by its
(+)g =closure).

Our lemma 3 almost coincides with [1, Lemma 1). Lemma 4
below has been indicated by Fedotov in [1, Lemma 2] in case
t =% but his proof is not clear (it seems that it contains
a gap at the induction step and that a lemma like our lemma
2 is nécessary).

In what follows our Theorem is divided into two theorems
1 and 2. The proof of Theorem 2 is quite different from that
of the corresponding part of [1] and seems to be more straight-
forward.

The proof of the followlng éasy lemma is omitted.

Lemmg 1. Let X be a linear space and M a subset of X.
Then the following assertions hold:

(1) M,# @ if and only if M contains O;

(i1) McM, if and only if M is starshaped (relative
to 0);

(111) My, =N r»g (1 + )M whenever M contains 0;
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(v} If C is a linear topological space, then M, ¢
c el(M);

(v) if X is a linear topological space and M is star-
shaped (relative to 0), then Mc M, c cl(M).

Theorem 1. Let X be a (possibly non-separated) real 1li-
near topological space, n21 an integer, Al"""n nonempty
subsets of X and ty,ec0ytp nonnegative numbers with

= ‘;‘:1 ty = 1. Then
(20, tyy)°%e (210 0akDx -

Proof. We may restrict ourselves to the case when all
Ay ‘s ere convex and contain 0. Let-x’ in (= ;.‘:l ti"i)o be

1

given and set hy = sup(Ai,x'>€ [0,+c0l. Then h; x’€ Ag

(o "l = 0) whenever hy> 0, so that

(1) (=, t;hh)x e 2, A7

where =, is the summation over all i’s with hy> O. If hy =
=0 and a>0, then a-lx'e A: so that

(2) (2, tia-l)x' e =, tiag,

where =, denotes the summation over all 1’s with hy = O.

From (1) and (2) it follows that
-1 -1y_* n o
(3) (=, tghy™ + 20 tsa Ix' e 3 1=1 tady

for each a>0.
If t,>0, then by is finite, because t3hy € =1 tiA
implies x € (tihi)(' = t;lkz so that hy = eup(Ai,x'>=
= ¢3! sup Ctyhy,x"> & t]'. Hemce hy = +c0 implies g = O
Let be (0,+c0) be arbitrary and set g; = hy if hy is f£i-
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nite and g = b otherwise. Then, by the Cauchy-Schwarz~ ine-
quality,

(=, tigzl + =, tia'l)(z' t8 + S, t8) =

z(=, tig;]'gi + 2, tiailalz = (3 ?=1 ti)z =1,
Letting b —» +c0 , we see that

(2, thft » By ta (0 + B tya)zl,

if we agree that t;h; = O whenever hy = +c0 (and, consequent-
1y, t4 = 0). From this and (3) it follows that

=) n o
(0] (S, t4hy » = tia) 7 x"e =g, tia] .
It is easy to see that
— i n e
3, tyhy = S, tghy e 3o tyhy =eup < Z . biky,x )€
£ 1
so that 3, t;h, + 3 t,a€l + a. Hence, by (4),
QA+ lx’e = ;_’31 ti&g, je., x’c (1l +a)= ';:1 titg for
each a>0. By lemma 1,(111), x'e (=], t4A3) .
The proof is completed.
Lemma 2. Let O<t<1l. Then the following definition

(by induction) of two sequences { “k’f:o and {vkif__.o is cor-
rect:

u, =1, Vo =1- t,
(5)
u v
3 e P . -
Yol T T = vovy K+l 5T - uuy

Moreover, both sequences lie in (0,1), strictly increase and

converge to one.

Proof. We shall prove, by induction, the following as-
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gertion:

n n
(6.3 fudpoor $v3]_, are well defined and strictly

!
increasing sequences contained in (0,1).
(6y) is true, because 1>1 - ui:'o, 1>1 - v§> 0, 80
that
Yo v V.o
1>9 = 1= v°v°>“o’ 1% = T- uouo’ o
Suppose that (6n) is true for some n = m21l. Then we have
u v (v, = Vo _q)
R R T
Yo'm o ml
As 1> v >V, 1> 0 and up >0 (by the inductive hypothesis), we
have 1> 1 - vovm>0, 1>1 - 'ovm—l’o and, consequently,
“m-o-l’ upe The inequality “m+1‘ 1 follows from
_ u, _ 1=-v, l1=-v., _
U = = < —22 =1,
1=V - 1=v' 1 -9,

Similarly Vp< Vp, < 1. Hence (6,) holds for each ne
Let u = limu, Vv = lim v . From (5) it follows that

u v
(*} and v = _——2—

1= vV l1-uyu

leading to the following equation for u:

2 2
uu® - (1 + v

2 =
- vgu + u, = 0.
A1+ w2 =2 =1 %u, = vy =20, the last equation is of
the form
v.zu2 - 2uu +u =u(u-1)2 =0
0 o 0 (] °
This equation has the unique solution u = 1. Similarly v = 1.
Lempa 3. Let X be a separated locally convex 8pace and

A,B,C three nonempty subsets of X. If C absorbs A and A * co
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DA + B, then coel (C)>B.

Proof. We may suppose that X is a real locally convex
space. Let us suppose that there is a point x in B which is
not in cocl (C). Then there exists x’ in X* such that
(x,x” > sup <C,x") . As C absorbs A, the number sup {a,x">
is finite. Then sup{A + C,x" = sup <A,x"> + sup (¢, x> <
<8up{A,x)+<{x,x"> & sup<A,x"> + sup<{B,x"> = sup<A + B,
x“>& sup<A + C,x"> , a contradiction.

Lemmg 4. Let X be a real separated locally convex spa-
ce, A,B, and C three nonempty subsets of X and O<t<l. If
tA + (1 - t)Bc € and tA® + (1 - t)B% C°, then

cocl (A U{0%) = cocl (BULOF}) = coel (CUL0}),

Proof. It is clear that we may restrict ourselves to
the case when all sets A,B,C are convex, closed and contain
0, and to show that A =B = C,

Let -(_uk}:;o and {vk}:“ be the sequences from lemma 2.
We shall show, by induction, that

1

(7,) upkc Ccuzla, v BcecvilB

holds for all nzO.

(7,) is true because uoA, vBcuA + v BcC and uolo,

0 L] -

voB7c u 8% + v B% %, f.e. €= ®c (ua%° = ula,
(v,B%)® = v7lB. Let (7,) hold for some n = m20. Then

UA + vBcC= (1 ~v v )C+ Vo¥nCe(l = vv)C + v,B
8o that, by lemma 3, ujAc (1 - v v )C, i.e. Ui AcCe Simi-
larly 'm-'-ch C. The other two inclusions in (7m+1) follow in
the same manner by considering the polar sets to A,B, and C.
Hence (7,) holds for all nzO.

As ux€C for each n20 and xe€ A, and u, —» 1, we have
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that Ac C. Similarly one sees that Cc A and Bc Cc B.

Theorem 2. Let the hypotheses of Theorem 1 be satisfied.
1f ¥ is locally convex and (= 7., t444)° = (= To1 tiddk
then cocl (A, U {0 }) = cocl (AJ U{03%) for all i, J with
titj> 0.

Proof. From lemma 1, (v) it follows that (= fll=1 1:1Afl’),'.=
=cl (3 ?=l timg). It is clear that we may restrict ourselves
to the case when n>1, all Ai's are convex, closed and com=
tain O, and all ti's are positive. We have to show that A) =
= LR ) = An.

- & - n -1,
Set t = ty, A = A, B=cl (Z-i, t5(1 =)k end
_ n 0y0
c=(Z j.; tyAy) . Then

tA + (1 - £)Becl(= ], t4aydc G,

because (= D) t38;)° = (eL( =i, A0 c® s B°c
c 2.;1___2 ty(1 - tlrlAg)* (by Theorem 1), we have that

o o ) n o o D 0 -
th° + (1 - ©)B%c t)A7 + (2§, t4Ay) < (2= tilx =
= l(E D £ = (UE Y, a0 = c® (we have used
that M, + Ny c (M + N)y which is true for any two subsets
M, N of a linear space). Hence we conclude that Al = A=B=
= C, by lemma 4. By the same reasons one sees that also Ay =
=..I= An = cl

The proof is com_p;lﬁ

Remark. We hope that our Theorem will find applica-

tions in convex analysis.

An easy application is as follows. Let the hypotheses of
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Theorem 1 be satisfied and let p be a K-subadditive func-
tional on X° (KZ0; p(u + v)£ Kp(u) + Kp(v) for all u,v in
X°). Then sup p(( = ;.l=1 tiki)o)é e(x,n)( Z'.‘;gl sup p(tiAg)),
sup pl( = ?=1 til\1)°)é s ?al sup p(tim‘i’) + (2" - n)p(0)),

-l _ 02 _ 4
where c(K,n) = mgﬁ_r:x;___)_ (c(Kyn) =1 if K = 1) and

m is the first integer such that n« z"’, provided p is continu-
ous on straight lines.
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