

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log43

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

ON THE STRICT CONVEXITY OF THE POLAR OPERATOR Josef DANES, Praha

Abstract: There is proved that the polar operator is convex in any linear topological space and strictly convex in any separated locally convex space.

Key words: Linear topological spaces, locally convex spaces, polar operator, convexity, strict convexity.

AMS: Primary 46A05

Ref. Z.: 7.972.2

Secondary 46A20

The purpose of this note is to prove the following theorem.

Theorem. Let X be a separated real locally convex space, $n \ge 1$ an integer, A_1, \dots, A_n nonempty subsets of X and t_1, \dots ..., t_n nonnegative numbers with $\geq n$ $t_i = 1$. Then

$$(\sum_{i=1}^{n} t_{i} A_{i})^{\circ} c (\sum_{i=1}^{n} t_{i} A_{i}^{\circ})_{*}$$

The equality holds if and only if $cocl(A_i \cup \{0\}) =$ = coel ($A_1 \cup \{0\}$) for all i, j with $t_1t_j > 0$.

If X is a real linear topological space, M a subset of X and N a subset of the dual space X', then co(M), cl(M), cocl(M) denotes the convex hull, closure and convex closed hull of M, respectively, and $M^0 = \{x' \in X' : \langle M, x' \rangle \ge 1\}$, $\mathbf{R}^0 = \{ \mathbf{x} \in \mathbf{X} : \langle \mathbf{x}, \mathbf{N} \rangle \leq 1 \}$ the polar sets of M and N, respectively (where, for example, $\langle M,x' \rangle \leq 1$ means that one is an

upper bound for the set $\langle M, x' \rangle = \{\langle x, x' \rangle : x \in M \}$).

If X is a linear space and M a subset of X, then M_* denotes the set $\bigcup \{ [0,x] : [0,x] \subset M \} = \{ x \in X : [0,x] \subset M \}$ ([0,0) = {0}}.

V.P. Fedotov [11 asserts that if A_1,\ldots,A_n are closed convex subsets of a real separated locally convex space X containing the origin, then

$$\frac{A_1 + \ldots + A_n}{n} \supset (\frac{A_1^{\circ} + \ldots + A_n^{\circ}}{n})^{\circ},$$

the equality being true iff $A_1 = \dots = A_n$. It seems that his consideration implies only that this inequality holds if the left hand side of it is replaced by its closure (or by its (.)* -closure).

Our lemma 3 almost coincides with [1, Lemma 1]. Lemma 4 below has been indicated by Fedotov in [1, Lemma 2] in case $t = \frac{1}{2}$ but his proof is not clear (it seems that it contains a gap at the induction step and that a lemma like our lemma 2 is necessary).

In what follows our Theorem is divided into two theorems 1 and 2. The proof of Theorem 2 is quite different from that of the corresponding part of [1] and seems to be more straightforward.

The proof of the following easy lemma is omitted.

Lemma 1. Let X be a linear space and M a subset of X. Then the following assertions hold:

- (i) $M_* \neq \emptyset$ if and only if M contains 0;
- (ii) $M \subset M_*$ if and only if M is starshaped (relative to 0);
 - (iii) $M_* = \bigcap_{r>0} (1 + r)M$ whenever M contains 0;

- (iv) If C is a linear topological space, then $M_{*} \subset cl(M)$;
- (v) if X is a linear topological space and M is starshaped (relative to O), then $M \subset M_{*} \subset cl(M)$.

Theorem 1. Let X be a (possibly non-separated) real linear topological space, $n \ge 1$ an integer, A_1, \dots, A_n nonempty subsets of X and t_1, \dots, t_n nonnegative numbers with

 $\sum_{i=1}^{n} t_i = 1$. Then

<u>Proof.</u> We may restrict ourselves to the case when all A_i 's are convex and contain 0. Let $\cdot x'$ in $(\sum_{i=1}^n t_i A_i)^0$ be given and set $h_i = \sup \langle A_i, x' \rangle \in [0, +\infty]$. Then $h_i^{-1} x' \in A_i^0$ $(\infty^{-1} = 0)$ whenever $h_i > 0$, so that

(1)
$$(\Sigma_{+} t_{i} h_{i}^{-1}) x' \in \Sigma_{+} t_{i} A_{i}^{0}$$

where Σ_{+} is the summation over all i's with $h_{i} > 0$. If $h_{i} = 0$ and a > 0, then $a^{-1}x' \in A_{i}^{0}$ so that

(2)
$$(\Sigma_0 t_i a^{-1}) x' \in \Sigma_0 t_i k_i^0$$

where Σ_0 denotes the summation over all i's with $h_i = 0$. From (1) and (2) it follows that

(3)
$$(\Sigma_{+} t_{i} h_{i}^{-1} + \Sigma_{0} t_{i} a^{-1}) x' \in \Sigma_{i=1}^{n} t_{i} A_{i}^{0}$$

for each a > 0.

If $t_i > 0$, then h_i is finite, because $t_i A_i \subset \sum_{i=1}^n t_i A_i$ implies $x' \in (t_i A_i)^0 = t_i^{-1} A_i^0$ so that $h_i = \sup \langle A_i, x' \rangle = t_i^{-1} \sup \langle t_i A_i, x' \rangle \leq t_i^{-1}$. Hence $h_i = +\infty$ implies $t_i = 0$.

Let $b \in (0,+\infty)$ be arbitrary and set $g_i = h_i$ if h_i is fi-

nite and g₁ = b otherwise. Then, by the Cauchy-Schwarz inequality,

$$(\Sigma_{+} t_{i} g_{i}^{-1} + \Sigma_{0} t_{i} a^{-1})(\Sigma_{+} t_{i} g_{i} + \Sigma_{0} t_{i} a) \ge$$

$$\geq (\sum_{i=1}^{n} t_{i}g_{i}^{-1}g_{i} + \sum_{i=1}^{n} t_{i}a_{i}^{-1}a_{i})^{2} = (\sum_{i=1}^{n} t_{i})^{2} = 1.$$

Letting $b \rightarrow +\infty$, we see that

$$(\Xi_{+} t_{i} h_{i}^{-1} + \Xi_{a} t_{i} a^{-1})(\Xi_{+} t_{i} h_{i} + \Xi_{o} t_{i} a) \ge 1,$$

if we agree that $t_1h_1 = 0$ whenever $h_1 = +\infty$ (and, consequently, $t_1 = 0$). From this and (3) it follows that

(4)
$$(\Sigma_{+} t_{i}h_{i} + \Sigma_{0} t_{i}a)^{-1}x' \in \Sigma_{i=1}^{n} t_{i}A_{i}^{0}$$
.

It is easy to see that

$$\Sigma_{+} t_{i} h_{i} = \Sigma_{+} t_{i} h_{i} + \Sigma_{0} t_{i} h_{i} = \sup \left\langle \sum_{i=1}^{n} t_{i} k_{i}, x' \right\rangle \leq$$

so that $\sum_{i} t_{i}h_{i} + \sum_{0} t_{i}a \leq 1 + a$. Hence, by (4), $(1 + a)^{-1}x' \in \sum_{i=1}^{n} t_{i}A_{i}^{0}$, i.e., $x' \in (1 + a) \sum_{i=1}^{n} t_{i}A_{i}^{0}$ for each a > 0. By lemma 1, (iii), $x' \in (\sum_{i=1}^{n} t_{i}A_{i}^{0})$.

The proof is completed.

Lemma 2. Let 0 < t < 1. Then the following definition (by induction) of two sequences $\{u_k\}_{k=0}^{\infty}$ and $\{v_k\}_{k=0}^{\infty}$ is correct:

(5)
$$u_{0} = t, \qquad v_{0} = 1 - t,$$

$$u_{k+1} = \frac{u_{0}}{1 - v_{0}v_{k}} \qquad v_{k+1} = \frac{v_{0}}{1 - u_{0}u_{k}}.$$

Moreover, both sequences lie in (0,1), strictly increase and converge to one.

Proof. We shall prove, by induction, the following as-

sertion:

 $\{u_k^{2n}, v_k^{2n}\}_{k=0}$ are well defined and strictly (6_n) increasing sequences contained in (0,1).

 (6_1) is true, because $1>1-u_0^2>0$, $1>1-v_0^2>0$, so that

$$1 > u_1 = \frac{u_0}{1 - v_0 v_0} > u_0, \quad 1 > v_1 = \frac{v_0}{1 - u_0 u_0} > v_0.$$

Suppose that (6_n) is true for some $n = m \ge 1$. Then we have

$$u_{m+1} - u_{m} = \frac{u_{0} v_{0} (v_{m} - v_{m-1})}{(1 - v_{0} v_{m})(1 - v_{0} v_{m-1})}.$$

As $1 > v_m > v_{m-1} > 0$ and $u_m > 0$ (by the inductive hypothesis), we have $1>1-v_0^v_m>0$, $1>1-v_0^v_{m-1}>0$ and, consequently, $u_{m+1} > u_m$. The inequality $u_{m+1} < 1$ follows from

$$u_{m+1} = \frac{u_0}{1 - v_0 v_m} = \frac{1 - v_0}{1 - v_0 v_m} < \frac{1 - v_0 v_m}{1 - v_0 v_m} = 1.$$

Similarly $v_m < v_{m+1} < 1$. Hence (6_n) holds for each n.

Let $u = \lim u_k$, $v = \lim v_k$. From (5) it follows that

$$u = \frac{u_0}{1 - v_0 v} \quad \text{and} \quad v = \frac{v_0}{1 - u_0 u}$$

leading to the following equation for u:

$$u_0 u^2 - (1 + u_0^2 - v_0^2)u + u_0 = 0.$$

As 1 + $u_0^2 - v_0^2 = 1 + u_0 - v_0 = 2u_0$, the last equation is of the form

$$u_0 u^2 - 2u_0 u + u_0 = u_0 (u - 1)^2 = 0.$$

This equation has the unique solution u = 1. Similarly v = 1.

Lemma 3. Let X be a separated locally convex space and A,B,C three nonempty subsets of X. If C absorbs A and A + C > ⊃ A + B, then cocl (C) ⊃ B.

Proof. We may suppose that X is a real locally convex space. Let us suppose that there is a point x in B which is not in cocl (C). Then there exists x' in X' such that $\langle x,x'\rangle > \sup \langle C,x'\rangle$. As C absorbs A, the number $\sup \langle A,x'\rangle$ is finite. Then $\sup \langle A+C,x'\rangle = \sup \langle A,x'\rangle + \sup \langle C,x'\rangle < \sup \langle A,x'\rangle + \langle x,x'\rangle \leq \sup \langle A,x'\rangle + \sup \langle B,x'\rangle = \sup \langle A+B,x'\rangle \leq \sup \langle A+C,x'\rangle$, a contradiction.

Lemma 4. Let X be a real separated locally convex space, A,B, and C three nonempty subsets of X and 0 < t < 1. If $tA + (1 - t)B \subset C$ and $tA^0 + (1 - t)B^0 \subset C^0$, then

$$cocl (A U{0}) = cocl (B U{0}) = cocl (C U{0}).$$

<u>Proof.</u> It is clear that we may restrict ourselves to the case when all sets A,B,C are convex, closed and contain O, and to show that A=B=C.

Let $\{u_k\}_{k=0}^{\infty}$ and $\{v_k\}_{k=0}^{\infty}$ be the sequences from lemma 2. We shall show, by induction, that

(7_n)
$$u_n A \subset C \subset u_n^{-1} A$$
, $v_n B \subset C \subset v_n^{-1} B$

holds for all n≥0.

 $(7_0) \text{ is true because } u_0A, \ v_0B \subset u_0A + v_0B \subset C \text{ and } u_0A^0, \\ v_0B^0 \subset u_0A^0 + v_0B^0 \subset C^0, \text{ i.e. } C = C^{00} \subset (u_0A^0)^0 = u_0^{-1}A, \\ (v_0B^0)^0 = v_0^{-1}B. \text{ Let } (7_n) \text{ hold for some } n = m \ge 0. \text{ Then }$

 $u_0A + v_0B \subset C = (1 - v_0v_m)C + v_0v_mC \subset (1 - v_0v_m)C + v_0B$ so that, by lemma 3, $u_0A \subset (1 - v_0v_m)C$, i.e. $u_{m+1}A \subset C$. Similarly $v_{m+1}B \subset C$. The other two inclusions in (7_{m+1}) follow in the same manner by considering the polar sets to A,B, and C. Hence (7_n) holds for all $n \ge 0$.

As $u_n x \in C$ for each $n \ge 0$ and $x \in A$, and $u_n \longrightarrow 1$, we have

that AcC. Similarly one sees that CcA and BcCcB.

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. If X is locally convex and $(\sum_{i=1}^{n} t_i A_i)^0 = (\sum_{i=1}^{n} t_i A_i^0)_*$, then cocl $(A_i \cup \{0\}) = \operatorname{cocl}(A_j \cup \{0\})$ for all i, j with $t_i t_j > 0$.

Proof. From lemma 1, (v) it follows that $(\sum_{i=1}^{n} t_i A_i^0)_{x} = cl (\sum_{i=1}^{n} t_i A_i^0)$. It is clear that we may restrict ourselves to the case when n>1, all A_i 's are convex, closed and contain 0, and all t_i 's are positive. We have to show that $A_i = \ldots = A_n$.

Set t = t₁, A = A₁, B = cl ($\Xi_{1=2}^{n}$ t₁(1 - t₁)⁻¹A₁) and C = ($\Xi_{1=1}^{n}$ t₁A₁⁰)⁰. Then

$$tA + (1 - t)B c cl(\sum_{i=1}^{n} t_iA_i) c C,$$

because $(\Xi_{i=1}^n t_i A_i)^\circ = (cl(\Xi_{i=1}^n t_i A_i^\circ))^{\circ\circ} = C^\circ$. As $B^\circ \subset C$ $(\Xi_{i=2}^n t_i (1-t_1)^{-1} A_i^\circ)_*$ (by Theorem 1), we have that $tA^\circ + (1-t) B^\circ \subset t_1 A_1^\circ + (\Xi_{i=2}^n t_1 A_1^\circ)_* \subset (\Xi_{i=1}^n t_i A_1^\circ)_* = cl(\Xi_{i=1}^n t_i A_1^\circ) = (cl(\Xi_{i=1}^n t_i A_1^\circ))_* = C^\circ$ (we have used that $M_* + N_* \subset (M+N)_*$ which is true for any two subsets M, N of a linear space). Hence we conclude that $A_1 = A = B = C$, by lemma 4. By the same reasons one sees that also $A_2 = C$.

The proof is completed.

Remark. We hope that our Theorem will find applications in convex analysis.

An easy application is as follows. Let the hypotheses of

Theorem 1 be satisfied and let p be a K-subadditive functional on X' $(K \ge 0; p(u + v) \ne Kp(u) + Kp(v)$ for all u,v in X'). Then sup $p((\sum_{i=1}^{n} t_i A_i)^0) \ne c(K,n) (\sum_{i=1}^{n} \sup_{i=1}^{n} p(t_i A_i^0)),$ sup $p((\sum_{i=1}^{n} t_i A_i)^0) \ne K^m (\sum_{i=1}^{n} \sup_{i=1}^{n} p(t_i A_i^0) + (2^m - n)p(0)),$ where $c(K,n) = \frac{K(2K^{n-1} - K^{n-2} - 1)}{K-1} (c(K,n) = 1 \text{ if } K = 1)$ and m is the first integer such that $n \ne 2^m$, provided p is continuous on straight lines.

References

[1] FEDOTOV V.P.: An analogon of an inequality between arithmetic and harmonic means for convex sets, Optimizacija 12(1973), 116-121.

Matematický ústav Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 16.2. 1977)