

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log42

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

PRODUCTIVE REPRESENTATIONS OF SEMIGROUPS BY PAIRS OF STRUCTURES

Věra TRNKOVÁ, Praha

Abstract: We prove that for any commutative semigroup (S,+) there exists a collection {r(s) | seS} of complete metric spaces such that for every s1, s2 eS,

(i) $r(s_1 + s_2)$ is isometric to $r(s_1) \times r(s_2)$ and

(ii) if s₁ + s₂ then r(s₁) is not homeomorphic to r(s₂).

<u>Key words</u>: Semigroup, representation, product, metric space, box-product.

AMS: Primary 54H10

Ref. Z.: 3.969

Secondary 20M30

1. Let us begin with a definition.

Definition. Let K, H be categories, K have finite products. Let \mathcal{F} : K \longrightarrow H be a functor. Let (S,+) be a commutative semigroup. Any mapping

r: S → obj K

is called an $\mathcal{F}_{-productive\ representation\ of}$ (S,+) if

- (i) for any $s_1, s_2 \in S$, $r(s_1 + s_2)$ is isomorphic to r(s1) × r(s2) in K;
- (ii) if $s_1, s_2 \in S$, $s_1 \neq s_2$, then $\mathcal{F}(r(s_1))$ is not isomorphic to $\mathcal{F}(r(s_2))$ in \mathbb{H} .

In [72], a representation of (S,+) by products in a category

K is introduced. It is a special case of the above definition with K = H and $\mathcal{F} = \text{ident}$. The dual definitions of \mathcal{F} -coproductive representation is evident.

- 2. Some of the known results give ${\mathscr F}$ -productive representations of some semigroups. Let us recall some of them.
- A) Let L be the category of lattices and all lattice-homomorphisms; let L L be the category of all linear lattices and all linear lattice-homomorphisms. Let L:

 : L L -> L be the functor which assigns to each linear lattice its underlying lattice. Then

any Abelian group and any countable commutative semigroup have & -productive representations.

B) Let $\mathbb R$ be the category of all commutative rings with unit (and all their unit-preserving homomorphisms), let $\mathbb S$ be the category of all commutative semigroups with unit. Let $\mathbb R:\mathbb R\longrightarrow\mathbb S$ be the functor which assigns to each ring its multiplicative semigroup. Then

any Abelian group and any countable commutative semigroup have $\ensuremath{\mathfrak{R}}$ -productive representations.

C) Let $\mathbb B$ be the category of all Banach spaces and all bounded linear operators with the norm ≤ 1 , let $\mathbb B$ A be the category of all Banach algebras. Let $\mathfrak B: \mathbb B A \longrightarrow \mathbb B$ be the functor which assigns to each Banach algebra its underlying Banach space. Then

any Abelian group and any countable commutative semigroup have $\mathfrak B$ -productive representations.

In all these cases, the & - or \Re - or \Re -productive representations are obtained as follows. By [AKT], aby Abelian

group has a representation by coproducts of Boolean spaces (i.e. compact Hausdorff zero-dimensional spaces), in other words, for any Abelian group G there exists a collection $\{r(g) \mid g \in G\}$ of pairwise non-homeomorphic Boolean spaces such that $r(g_1 + g_2)$ is always homeomorphic to the coproduct $r(g_1) \coprod r(g_2)$ of $r(g_1)$ and $r(g_2)$. The analogous result for all countable commutative semigroups is proved in [K] (here, r(g) are metrizable).

Consider the sets C(r(g)) of all real-valued continuous functions on these spaces r(g). They can be structured in a lot of ways: As linear lattices and lattices for A), as rings and semigroups for B), as Banach algebras and Banach spaces for C). Structured as a linear lattice or ring or Banach algebra, $C(r(g_1) \coprod r(g_2))$ is isomorphic to $C(r(g_1)) \times C(r(g_2))$ in the corresponding category. Since $r(g_1)$ is not homeomorphic to $r(g_2)$, $r(r(g_1))$ is not isomorphic to $r(g_2)$, structured as lattices (by the Birkhoff-Kaplansky theorem) or Banach spaces (by the Banach-Stone theorem) or multiplicative semigroups (by Milgram [M)).

Let us notice that if $\mathcal{F}: \mathbb{K} \longrightarrow \mathbb{H}$ preserves finite products and a semigroup has an \mathcal{F} -productive representation, then it has a representation by products in \mathbb{H} in the sense of $[T_2]$. Hence, if a functor \mathcal{F} from an arbitrary category into the category Set of all sets or into the category Lin of all linear spaces preserves finite products, then no non-trivial Abelian group has an \mathcal{F} -productive representation.

3. Let CM be the category of all complete metric spaces with diameter ∠ 1 and all their contractions (we re-

call that a mapping c is a contraction if dist $(c(x), c(y)) \neq d$ ist (x,y) for all x,y). Let us notice that isomorphisms in CM coincide with isometries and a product-metric d of d_1 and d_2 is given by the usual formula

$$d((x_1,x_2),(y_1,y_2)) = \max \{d_1(x_1,y_1),d_2(x_2,y_2)\}$$

Let Top be the category of all topological spaces and all their continuous mappings. Here isomorphisms coincide with homeomorphisms. Let

$$\mathcal{M}: \mathbb{C}M \longrightarrow \mathbb{T}op$$

be the functor which assigns to each metric space its underlying topological space. The aim of this note is to prove the following theorem:

Theorem. Every commutative semigroup has an M-productive representation.

Every commutative semigroup has a representation by products of uniform, proximity and topological spaces; by [AK], every C-embeddable semigroup has a representation by products of metrizable topological spaces. The above theorem strengthens all these results.

4. First, we sketch modifications of the general method, described in $[T_2]$. If a semigroup S has an $\mathcal F$ -productive representation, then any of its subsemigroups has also an $\mathcal F$ -productive representation. Consequently, it is sufficient to investigate $\mathcal F$ -productive representation of "universal semigroups" (this means universal for some class of semigroups with respect to an embedding of semigroups).

Denote by N the additive semigroup of all non-negative inte-

gers, by N^{***} its **** -th power (with the operation given pointwise) and by exp N^{***} the semigroup of all its subsets (with the operation given by A + B = $\{a + b \mid a \in A, b \in B\}$). By $[T_3]$, any commutative semigroup S can be embedded in exp N^{***} with $M = K_0$. card S. Hence, we shall investigate F-productive representations of the semigroups exp N^{***}.

5. We shall use the following notation and conventions. Isomorphism in a category will be denoted by \simeq , product by Π (or \times for finite collections), coproduct by Π . The product of the empty collection is a terminal object (it can be added to a category whenever it is missing). If a is an arbitrary object of a category with finite products, then a^0 is the terminal object, $a^1 \simeq a$, $a^{n+1} \simeq a \times a^n$. We say that a category K with all products and coproducts is distributive (see $[T_2]$) if

$$(\underset{i \in I}{\coprod} a_i) \times (\underset{j \in J}{\coprod} b_j) \simeq_{(i,j) \in I \times J} (a_i \times b_j).$$

We say that an object a is a <u>summand</u> of b if b≃alle for an object c.

6. Let K be a category with products, let $\mathcal{F}: K \to \mathbb{R}$ be a functor. Let \mathcal{Z} be a set of objects of K. For any $f \in \mathbb{N}^{\mathbb{Z}}$, denote by $\mathbf{Z}(f)$ the product $2^{\prod_{i \in \mathcal{Z}}} 2^{\mathbf{f}(Z)}$ (if f(Z) = 0, $Z^{\mathbf{f}(Z)}$ is the terminal object). We say that \mathcal{Z} is an \mathcal{F} -independent set of objects of K if for every $f \in \mathbb{N}^{\mathbb{Z}}$, $A \subset \mathbb{N}^{\mathbb{Z}}$,

f ϵ A whenever \mathcal{F} (\mathbb{Z} (f)) is a summand of \mathcal{F} (\mathfrak{F} , $\mathfrak{A} \times \mathfrak{S}$ \mathbb{Z} (g), where S is a set and \mathbb{Z} (g) for all $s \in S$.

(This generalizes the notion of productively independent set of objects, see [T_2] and [AK].)

7. Proposition. Let \mathbb{K} be a distributive category, let $\mathcal{F}: \mathbb{K} \longrightarrow \mathbb{H}$ preserve coproducts. Let there exist an \mathcal{F} -independent set \mathcal{Z} of objects of \mathbb{K} . Then the semigroup exp $\mathbb{K}^{\mathcal{Z}}$ has an \mathcal{F} -productive representation.

<u>Proof.</u> For any $f \in \mathbb{N}^{\mathbb{Z}}$ denote $\mathbb{Z}(f) = z \prod_{\ell \in \mathbb{Z}} z^{f(2)}$; let $\mathbb{C}(f)$ be a coproduct of $2^{m\ell}$ copies of $\mathbb{Z}(f)$ with $m\ell = 2^{m\ell}$ and $\mathbb{Z}(f)$. For $\mathbb{Z}(f)$ put

$$r(A) = \coprod_{f \in A} \mathbb{C}(f).$$

Then r is an \mathcal{F} -productive representation of $\exp N^{\mathcal{Z}}$. For, if A, Bc $N^{\mathcal{Z}}$, then $r(A + B) \simeq r(A) \times r(B)$ (implied by $\mathbf{Z}(f+g) \simeq \mathbf{Z}(f) \times \mathbf{Z}(g)$). If $A \neq B$, say if $A \setminus B \neq \emptyset$, then, for $f \in A \setminus B$, $\mathcal{F} \mathbf{Z}(f)$ is a summand of $\mathcal{F} r(A)$ while it cannot be a summand of $\mathcal{F} r(B)$ because \mathcal{Z} is \mathcal{F} -independent. Hence, $\mathcal{F} r(A)$ is not isomorphic to $\mathcal{F} r(B)$ in \mathbb{H} .

Corollary. Let K be a distributive category, let $\mathcal{F}: \mathbb{K} \longrightarrow \mathbb{H}$ be a coproduct-preserving functor. Let K have an arbitrarily large \mathcal{F} -independent set of objects. Then any commutative semigroup has an \mathcal{F} -productive representation.

8. Let us examine the category CM . It has all co-products (for, if $\{(X_1,d_1)\mid i\in I\}$ is a collection of ob-

jects, X_i disjoint, put $X = \bigcup_i X_i$, $d(x,y) = d_i(x,y)$ whenever $x,y \in X_i$ for some i, d(x,y) = 1 otherwise; d is complete whenever all the d_i 's are complete; (X,d) is a coproduct in $\mathbb{C}M$). It has all products (for, if $\{(X_i,d_i) \mid i \in I\}$ is a collection of objects, put $X = \bigcup_{i \in I} X_i$, $d(i \in X_i) \in I$ is distributive. The function $M: \mathbb{C}M \longrightarrow \mathbb{T}$ op preserves coproducts and finite products, but it does not preserve products in general. To prove the theorem, we have to show that $\mathbb{C}M$ contains arbitrarily large sets of M-independent sets of objects.

9. If $\{Y_1 \mid i \in I\}$ is a collection of topological spaces, denote by $\{X_1Y_1\}$ their box-product. We recall that a set Y of topological spaces is called stiff if for any Y_1 , $Y_2 \in Y$ and any continuous mapping $m: Y_1 \longrightarrow Y_2$ either m is constant or $Y_1 = Y_2$ and m = ident.

Now, let $Y_1 = Y_2$ and $Y_2 = Y_3$ and $Y_4 = Y_4$ denote by $Y_1 = Y_2$ and such that both the identical mapping set as $Y_1 = Y_2 = Y_3 = Y_4 = Y_4 = Y_4 = Y_4 = Y_4 = Y_5 =$

$$\mathcal{B}_{Y \in \mathcal{Y}} Y^{f(Y)} \longrightarrow \mathbf{B}_{(f)} \longrightarrow_{Y \in \mathcal{Y}} \pi_{\mathcal{Y}} Y^{f(Y)}$$

are continuous (where T denotes product in Top).

pings

In the following proposition, S is a set and, for each setS, $(B(g))_s$ is homeomorphic to B(g). If $X \subset B(g)$, X_s means the corresponding subspace of $(B(g))_{g^s}$

Proposition. Let U be a stiff set of connected Hausdorff spaces. Let $f \in \mathbb{N}^{U}$, $A \subset \mathbb{N}^{U}$ be given. If B(f) is homeomorphic to a closed-and-open subset of $(g,k) \in A \times S$ $(B(g))_{g}$,

then fe A.

<u>Proof.</u> a) First, let us notice that for any $Y \in \mathcal{Y}$ and any $m_1, m_2 \in \mathbb{N}$, the existence of a homeomorphism of Y^{m_1} into Y^{m_2} implies $m_1 \leq m_2$ (see [H]).

- b) For any $g \in \mathbb{N}^{2}$ and any $x \in \mathbb{B}(g)$, denote by $\mathbb{B}_{\mathbf{x}}(g)$ the subspace of $\mathbb{B}(g)$ consisting of all these points \mathbf{y} which differ from \mathbf{x} only in finitely many coordinates. Clearly, every $\mathbb{B}_{\mathbf{x}}(g)$ is connected. One can see easily by a), that if, for some g_1 , $g_2 \in \mathbb{N}^{2}$ and some $\mathbf{x} \in \mathbb{B}(g_1)$, there exists a homeomorphism of $\mathbb{B}_{\mathbf{x}}(g_1)$ into $\mathbb{B}(g_2)$, then $g_1 \leq g_{2^*}$
- c) Now, let h: $\mathbf{B}(\mathbf{f}) \longrightarrow_{(\mathbf{g}/\mathbf{s}) \in \mathsf{A} \times \mathsf{S}} (\mathbf{B}(\mathbf{g}))_{\mathbf{S}}$ be a homeomorphism onto a closed-and-open subset. Choose $\mathbf{x} \in \mathbf{B}(\mathbf{f})$. Since $\mathbf{B}_{\mathbf{x}}(\mathbf{f})$ is connected, there exists $(g_0, s_0) \in \mathsf{A} \times \mathsf{S}$ such that $\mathbf{h}(\mathbf{B}_{\mathbf{x}}(\mathbf{f})) \in (\mathbf{B}(g_0))_{\mathbf{S}}$. By b), $\mathbf{f} \in g_0$. Put $\mathbf{y} = \mathbf{h}(\mathbf{x})$. Since $\mathbf{h}(\mathbf{B}(\mathbf{f}))$ is a closed-and-open set containing \mathbf{y} and $(\mathbf{B}_{\mathbf{y}}(g_0))_{\mathbf{S}_0}$ is connected, it is contained in $\mathbf{h}(\mathbf{B}(\mathbf{f}))$. Hence, \mathbf{h}^{-1} defines a homeomorphism of $\mathbf{B}_{\mathbf{y}}(g_0)$ into $\mathbf{B}(\mathbf{f})$. By b), $\mathbf{g}_0 \not= \mathbf{f}$. We conclude that $\mathbf{f} = \mathbf{g}_0 \in \mathsf{A}$.
- 10. By [T₁], there exist arbitrarily large stiff sets $\mathcal U$ of connected topological spaces such that any $Y \in \mathcal U$ can be metrized by a complete metric, say d_Y . We may suppose $d_Y \leq 1$. By the previous proposition, $\mathcal Z = \{(Y, d_Y) \mid Y \in \mathcal U\}$ is an $\mathcal M$ -independent set of objects of CM. This completes the proof of the theorem.

References

[AK] J. ADÁMEK, V. KOUBEK: On representation of ordered commutative semigroups, to appear.

- [AKT] J. ADÁMEK, V. KOUBEK, V. TRNKOVÁ: Sums of Boolean spaces represent any group, Pacif. J. of Math. 61(1975), 1-7.
- [H] J. HERRLICH: Topologische Reflexionen und Coreflexionen, Lecture Notes in Math. 78(1968).
- [K] J. KETONEN: The structure of countable Boolean algebras, preprint.
- (M) A.N. MILGRAM: Multiplicative semigroups continuous functions, Duke Math. J. 16(1948), 377-383.
- [T] W. TRNKOVÁ: Non-constant continuous mappings of metric and compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13(1972), 283-295.
- [T₂] V. TRNKOVÁ: Representation of semigroups by products in a category, J. of Algebra 34(1975), 191-204.
- [T₃] V. TRNKOVÁ: On a representation of commutative semigroups, Semigroup Forum 10(1975), 203-214.

Matematický ústav Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 28.3. 1977)

