

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log39

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

COMPLETION OF SEQUENTIAL CAUCHY SPACES

R. FRIČ, Žilina and D.C. KENT, Pullman

Abstract: We study two types of sequential Cauchy spaces projectively generated by classes of functions, their completions, and their mutual relations.

<u>Key words</u>: Sequential Cauchy space, completion, convergence space, sequential envelope.

Ref. Z.: 3.961.1 AMS: 54D55

1. Introduction. For the reader's convenience we recall in this section some basics about (sequential) Cauchy spaces.

Notation 1.1. If $\langle x_n \rangle$, $\langle y_n \rangle$ are two sequences, then $\langle x_n \rangle \land \langle y_n \rangle$ denotes a sequence $\langle z_n \rangle$ defined as follows: $z_1 = x_1$, $z_2 = y_1$, $z_3 = x_2$, $z_4 = y_2$,..., i.e. $x_n = z_{2n-1}$, $y_n = z_{2n-1}$ = z_{2'n}.

Definition 1.2. A Cauchy space is a pair (X,L), where X is a set and L a collection of sequences ranging in X such that

- (1) $\langle x \rangle \in L$ for each $x \in L$;
- (2) $\langle x_n \rangle \in L$ implies $\langle x_n' \rangle \in L$ for each subsequence $\langle x'_n \rangle$ of $\langle x_n \rangle$;
- (3) if $\langle x_n \rangle$, $\langle y_n \rangle \in L$ and there are subsequences $\langle x'_n \rangle$ of $\langle x_n \rangle$ and $\langle y'_n \rangle$ of $\langle y_n \rangle$ such that $x'_n = y'_n$, $n \in \mathbb{N}$, then $\langle x_n \rangle \land \langle y_n \rangle \in L$; and

(4) if $\langle x_n \rangle \land \langle x \rangle \in L$ and $\langle x_n \rangle \land \langle y \rangle \in L$, then x = y.

If (X,L) is a Cauchy space, then L is called a <u>Cauchy structure</u> for X. If L satisfies the additional condition

- (5) $\langle x_n \rangle \in L$ whenever
- (a) each subsequence $\langle x_n' \rangle$ of $\langle x_n \rangle$ contains a subsequence $\langle x_n' \rangle$ of $\langle x_n' \rangle$ such that $\langle x_n' \rangle \in L$; and
- (b) if $\langle \mathbf{x}_n' \rangle$ and $\langle \mathbf{x}_n'' \rangle$ are subsequences of $\langle \mathbf{x}_n \rangle$ such that $\langle \mathbf{x}_n' \rangle$, $\langle \mathbf{x}_n'' \rangle \in L$, then $\langle \mathbf{x}_n' \rangle \wedge \langle \mathbf{x}_n'' \rangle \in L$; then (\mathbf{X}, \mathbf{L}) is said to be a * Cauchy space.

The effect of condition (5) can be brought out by considering the real line with its usual metric. Every bounded sequence of real numbers has a Cauchy subsequence. Hence, every bounded sequence of real numbers satisfies condition (a). Yet every bounded sequence of real numbers is not Cauchy in the usual sense because (b) is lacking; e.g. consider the sequence 0, 1, 0, 1, 0, 1, ...

A Cauchy space (X,L) induces a convergence space (X,\mathcal{L},λ) in the following natural way: $\mathbf{x}=\mathcal{L}-\lim \, \mathbf{x}_n$ iff (X,\mathcal{L},λ) in the following natural way: $\mathbf{x}=\mathcal{L}-\lim \, \mathbf{x}_n$ iff $(\mathbf{x},\mathbf{x}) \wedge (\mathbf{x}) \in \mathbf{L}$. Moreover, if (X,L) is a * Cauchy space, then $\mathcal{L}=\mathcal{L}^*$. The topological modification λ^{ω_1} of λ will be called a topological closure for X. A subspace Y of X is topologically dense in X if λ^{ω_1} Y = X. A Cauchy space is said to be complete if each Cauchy sequence converges in the induced convergence space. A mapping $f\colon (X_1,L_1) \longrightarrow (X_2,L_2)$ is said to be Cauchy-continuous if $(\mathbf{x}_n) \in \mathbf{L}_1$ implies $(f(\mathbf{x}_n)) \in \mathbf{L}_2$. The set of all Cauchy-continuous functions on (X,L) is denoted by $\hat{C}(X,L)$. The set

 $\begin{array}{l} \mathbf{M} = \{\langle \mathbf{f}_m \rangle \in (\hat{\mathbf{C}}(\mathbf{X}, \mathbf{L}))^{\mathbf{N}}; \ \lim_{\mathbf{n}, \mathbf{m} \to \mathbf{c}} \mathbf{f}_{\mathbf{m}}(\mathbf{x}_{\mathbf{n}}) \ \text{exists for each} \\ \langle \mathbf{x}_{\mathbf{n}} \rangle \in \mathbf{L} \} \ \text{is a Cauchy structure for } \hat{\mathbf{C}}(\mathbf{X}, \mathbf{L}) \ \text{and is said to} \\ \text{be the continuous Cauchy structure. The space } (\hat{\mathbf{C}}(\hat{\mathbf{C}}(\mathbf{X}, \mathbf{L}), \mathbf{M}), \mathbf{M}) \\ \text{is denoted by } (\hat{\mathbf{C}}^2(\mathbf{X}, \mathbf{L}), \mathbf{M}^2). \ \text{The evaluation mapping} \\ \text{ev}_{\mathbf{X}} \colon (\mathbf{X}, \mathbf{L}) \longrightarrow (\hat{\mathbf{C}}^2(\mathbf{X}, \mathbf{L}), \mathbf{M}^2) \ \text{is defined by } \text{ev}_{\mathbf{X}}(\mathbf{x}) = \Phi_{\mathbf{X}}, \ \text{where} \\ \text{for } \mathbf{f} \in \hat{\mathbf{C}}(\mathbf{X}, \mathbf{L}) \ \text{we define} \ \Phi_{\mathbf{X}}(\mathbf{f}) = \mathbf{f}(\mathbf{x}); \ \text{it is always Cauchy-continuous. If it is a Cauchy-embedding (i.e. a Cauchy-homeomorphism into), then (X, L) is said to be <math>\hat{\mathbf{C}}$ -embedded. \\ \end{array}

2. Projective generations of Cauchy structures.

Proposition and definition 2.1. Let (X,L) be a Cauchy space and $D \subset \hat{C}(X,L)$, D separates points of X. Let $L_D = \{\langle x_n \rangle \in X^M; \lim_{m \to \infty} f(x_n) \text{ exists whenever } f \in D \}$ and $L_d = \{\langle x_n \rangle \in X^M; \lim_{m \to \infty} f_m(x_n) \text{ exists whenever } \langle f_m \rangle, f_m \in D \text{ is a Cauchy sequence in } (\hat{C}(X,L),M) \}$. Then L_D and L_d are *Cauchy structures for X and $L \subset L_d \subset L_D$. If $L = L_D$, then L, resp. (X,L), is said to be projectively generated by D. If $L = L_d$, then L, resp. (X,L), is said to be c-projectively generated by D.

It follows immediately that if a space is projectively generated by D, then it is also c-projectively generated by D. The converse statement is not true in general as it will be shown by a counterexample (see Proposition 4.7). In [I - K] it was proved that for D = C(X, L) the following are equivalent:

(a) (X,L) is \hat{C} -embedded; (b) $L = L_D$; (c) $L = L_d$ (the original notation is $L_D = L_{\hat{C}}$, $L_d = L_{\hat{M}}$).

3. d-completion.

<u>Definition 3.1.</u> Let (X,L) be a Cauchy space c-projectively generated by $D \subset \hat{C}(X,L)$. A complete Cauchy space (X_1,L_1) is said to be a d-completion of (X,L) if

- (a) (X,L) is a topologically dense subspace of (X_1,L_1) ;
- (b) for each $f \in D$ there is $\overline{f} \in \widehat{\mathcal{C}}(X_1, L_1)$ such that $f = \overline{f} \mid X$, i.e. $D \subset \widehat{\mathcal{C}}(X_1, L_1) \mid X$;
- (c) (X_1, L_1) is c-projectively generated by $\overline{D} = \{ \overline{f} \in \widehat{C}(X_1, L_1); \overline{f} \mid X \in D \}$; and
- (d) $\overline{\mathbb{D}}$ and \mathbb{D} endowed with the corresponding continuous Cauchy structures are Cauchy-homeomorphic under the natural correspondence, i.e. the correspondence $\overline{f} \longrightarrow \overline{f} \mid X = f$ is one-to-one and $\langle \overline{f}_n \rangle$, $\overline{f}_n \in \overline{\mathbb{D}}$, is a Cauchy sequence in $(\widehat{C}(X_1, L_1), M)$ iff $\langle f_n \rangle$, $f_n = \overline{f}_n \mid X$, is a Cauchy sequence in $(\widehat{C}(X, L), M)$.

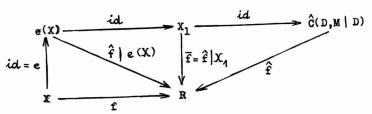
Lemma 3.2. Let (X,L) be a Cauchy space c-projectively generated by $D \subset \hat{C}(X,L)$, $(D,M \mid D)$ the subspace of $(\hat{C}(X,L),M)$, and e a mapping of (X,L) into $(\hat{C}(D,M \mid D),M)$ defined as follows: $e(x) = \Phi_x$, where for $f \in D$ we define $\Phi_x(f) = f(x)$. Then e is a Cauchy embedding.

Lemma 3.2 was proved in [I - K] in the special case of $D = \hat{C}(X,L)$. The proof of the general case is similar.

Theorem 3.3. Let (X,L) be a Cauchy space c-projectively generated by $D \subset \widehat{C}(X,L)$. Then there exists a d-completiom of (X,L).

<u>Proof.</u> It follows from Lemma 3.2 that identifying x with e(x) we can consider (X,L) as a subspace of $(\hat{C}(D,M \mid D),M)$. We shall prove that the subspace (X_1,L_1) of $(\hat{C}(D,M \mid D),M)$, where

 X_1 is the topological closure of X in $(\hat{\mathbb{C}}(D,M\mid D),M)$ and $L_1=M\mid X_1$, is a d-completion of (X,L). It was proved in [I-K] that $(\hat{\mathbb{C}}(D,M\mid D),M)$ is a complete space. Thus the closed subspace (X_1,L_1) of $(\hat{\mathbb{C}}(D,M\mid D),M)$ is complete. We are to prove that (X_1,L_1) satisfies conditions (a) - (d) of Definition 3.1. Condition (a) follows from the construction of (X_1,L_1) . It was proved in [F] that the space $(\hat{\mathbb{C}}(X,L),M)$ is $\hat{\mathbb{C}}$ -embedded. Thus the subspace $(D,M\mid D)$ is also $\hat{\mathbb{C}}$ -embedded, and hence the evaluation mapping $ev_D\colon (D,M\mid D) \longrightarrow (\hat{\mathbb{C}}^2(D,M\mid D),M^2)$ is a Cauchy embedding. Consequently, for each $f\in D$ the image $ev_D(f)=\hat{f}$ is a Cauchy-continuous function on $(\hat{\mathbb{C}}(D,M\mid D),M)$. Since $\hat{f}(\Phi)=\Phi(f)$ for each $\Phi\in \hat{\mathbb{C}}(D,M\mid D)$, we have $\hat{f}(x)=f(x)$ for each $\Phi_X=x\in X$. Hence $\bar{f}=\hat{f}\mid X_1$ is a Cauchy-continuous extension of f onto (X_1,L_1) and condition (b) is satisfied. The construction of \bar{f} is shown on the following diagram:



Now, we shall prove condition (d). It follows by a standard topological argument that the extension \overline{f} of f is uniquely determined. Hence the natural correspondence $\overline{f} \longrightarrow \overline{f} \mid X = f$ is one-to-one. Clearly, if $\langle \overline{f}_n \rangle$, $\overline{f}_n \mid X \in D$, is a Cauchy sequence in $(\widehat{C}(X_1, L_1), M)$, then $\langle f_n \rangle$, $f_n = \overline{f}_n \mid X$, is a Cauchy sequence in $(\widehat{C}(X, L), M)$. Conversely, let $\langle f_n \rangle$ be a Cauchy sequence in $(D, M \mid D)$. Since ev_D is a Cauchy embedding, the se-

quence $\langle \hat{\mathbf{f}}_n \rangle$, $\hat{\mathbf{f}}_n = \operatorname{ev}_{\mathbb{D}}(\mathbf{f}_n)$, is a Cauchy sequence in $(\hat{\mathbf{C}}^2(\mathbb{D}, \mathbb{M} \mid \mathbb{D}), \mathbb{M}^2)$. Hence $\langle \overline{\mathbf{f}}_n \rangle$, $\overline{\mathbf{f}}_n \mid \mathbb{X} = \mathbf{f}_n$, is a Cauchy sequence in $(\hat{\mathbf{C}}(\mathbb{X}_1, \mathbb{L}_1), \mathbb{M})$.

It remains to prove condition (c). Let $\langle \Phi_n \rangle$ be a sequence in $X_1 \subset \hat{C}(D,M \mid D)$ such that

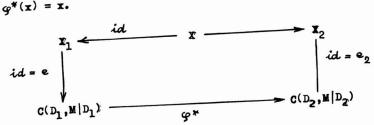
- (1) $\lim_{m,n\to\infty} \overline{f}_m(\Phi_n)$ exists whenever $\langle \overline{f}_m \rangle, \overline{f}_m \in \overline{D}$, is a Cauchy sequence in $(\widehat{C}(X_1,L_1),M)$. Since $\overline{f}_m(\Phi_n) = \Phi_n(f_m)$, $f_m = \overline{f}_m \mid X$, it follows from (d) that (1) is equivalent to
- (2) $\lim_{m,n\to\infty} \Phi_n(f_m)$ exists whenever $\langle f_m \rangle$ is a Cauchy sequence in $(D,M \mid D)$.

 Thus $\langle \Phi_n \rangle \in L_1$ and the proof is complete.

Theorem 3.4. Let (X,L) be a Cauchy space c-projectively generated by $D \subset \widehat{C}(X,L)$. If (X_1,L_1) and (X_2,L_2) are two d-completions of (X,L), then there is a Cauchy homeomorphism h: $(X_1,L_1) \longrightarrow (X_2,L_2)$ such that h(x) = x for each $x \in X$.

<u>Proof.</u> For i=1,2, denote by $D_1=\{f\in \hat{C}(X_1,L_1); f\mid X\in D\}$, by $(D_1,M\mid D_1)$ the subspace of $(\hat{C}(X_1,L_1),M)$, and by $(D,M\mid D)$ the subspace of $(\hat{C}(X,L),M)$. It follows from (d) in Definition 3.2 that $(D_1,M\mid D_1)$ and $(D,M\mid D)$ are Cauchyhomeomorphic under the natural correspondence. Consequently, $\varphi:(D_2,M\mid D_2)\longrightarrow (D_1,M\mid D_1)$, where for $f\in D_2$ its image $\varphi(f)$ is determined by $\varphi(f)\mid X=f\mid X$, and hence also its first conjugate $\varphi^*:(\hat{C}(D_1,M\mid D_1),M)\longrightarrow (\hat{C}(D_2,M\mid D_2),M)$, $\varphi^*(\bar{\Phi})=\varphi\circ\bar{\Phi}$, are Cauchy homeomorphisms. It follows from Lemma 3.2 that identifying x with $e_1(x)$, where for $f\in D_1$ we define $(e_1(x))(f)=f(x)$, we can consider the complete space (X_1,L_1) as a closed subspace of $(\hat{C}(D_1,M\mid D_1),M)$.

Now, an easy computation shows that for each x & X we have $\varphi^*(\mathbf{x}) = \mathbf{x}.$



Since X is topologically dense in (X_1,L_1) , it follows by a standard topological argument that $h = g^* \setminus x_1$ is the desired Cauchy homeomorphism.

4. D-completion.

Definition 4.1. Let (X,L) be a Cauchy space projectively generated by Dc $\hat{C}(X,L)$. A complete Cauchy space (X_1,L_1) is said to be a D-completion of (X,L) if

- (a) (X,L) is a topologically dense subspace of (X_1,L_1) ;
- (b) for each $f \in D$ there is $\overline{f} \in \widehat{C}(X_1, L_1)$ such that f = $\neq \overline{f} \mid X$, i.e. Dc $\widehat{G}(X_1, L_1) \mid X$; and
- (c) (x_1,L_1) is projectively generated by $D = \{ \vec{f} \in \hat{C}(X_1, L_1); \vec{f} \mid X \in D \}.$

Proposition 4.2. Let (X,L) be a Cauchy space projectively generated by $D \subset \hat{C}(X,L)$ and $(X, \mathcal{L}^*, \Lambda)$ the associated convergence space. Then:

- (a) Dc C(X) and (X, \mathcal{L}^* , λ) is D-sequentially regular.
- (b) L is the set of all D-fundamental sequences in (x, L*, A).
 - (c) $(X, \mathcal{L}^*, \lambda)$ is D-sequentially complete iff (X, L)

is complete.

The straightforward proof is omitted.

<u>Proposition 4.3</u>. Let $(X, \mathcal{L}^*, \mathcal{X})$ be a D-sequentially regular convergence space and L the set of all D-fundamental sequences. Then:

- (a) L is a * Cauchy structure for X.
- (b) $D \subset \hat{C}(X,L)$ and (X,L) is projectively generated by D_{\bullet}
- (c) $(X, \mathcal{E}^*, \lambda)$ is associated with (X, L).
- (d) (X,L) is complete iff $(X, \mathcal{L}^*, \lambda)$ is D-sequentially complete.

The straightforward proof is omitted.

Theorem 4.4. Let (X,L) be a Cauchy space projectively generated by $D \subset \widehat{C}(X,L)$. Then there exists a D-completion of (X,L).

<u>Proof.</u> Let $(X, \mathcal{L}, \lambda)$ be the convergence space associated with (X,L). It follows from (a) in Proposition 4.2 that (X,\mathcal{L},λ) is D-sequentially regular. Let $(X_1,\mathcal{L}_1,\lambda_1)$ be a D-sequential envelope of (X,\mathcal{L},λ) , $\overline{D}=\{\overline{f}\in C(X_1); \overline{f}\mid X\in D\}$, and L_1 the set of all \overline{D} -fundamental sequences in X_1 . It follows from Proposition 4.2 and Proposition 4.3 that (X_1,L_1) is a D-completion of (X,L).

Note 4.5. Let $(X, \mathcal{L}^*, \lambda)$ be a D-sequentially regular convergence space. Let L be the set of all D-fundamental sequences in X. It follows from Proposition 4.3 that (X,L) is a * Cauchy space projectively generated by $D \subset \widehat{C}(X,L)$. Let (X_1,L_1) be a D-completion of (X,L). Using Proposition 4.2 and Proposition 4.3 it is easy to see that the convergence space $(X_1,\mathcal{L}_1,\lambda_1)$ associated with (X_1,L_1) is a D-sequential enve-

lope of (X, e*, A).

Theorem 4.6. Let (X,L) be a Cauchy space projectively generated by $D \subset \widehat{C}(X,L)$. If (X_1,L_1) and (X_2,L_2) are two D-completions of (X,L), then there is a Cauchy homeomorphism h: $(X_1,L_1) \longrightarrow (X_2,L_2)$ such that for each $x \in X$ we have h(x) = x.

Proof. Let (X,\mathcal{L},λ) be the convergence space associated with (X,L) and $(X_1,\mathcal{L}_1,\lambda_1)$ the convergence space associated with (X_1,L_1) , i=1,2. It follows from Note 4.5 that $(X_1,\mathcal{L}_1,\lambda_1)$ is a D-sequential envelope of (X,\mathcal{L},λ) . Hence there is a homeomorphism h: $(X_1,\mathcal{L}_1,\lambda_1) \longrightarrow (X_2,\mathcal{L}_2,\lambda_2)$ such that for each $x \in X$ we have h(x) = x (cf. Theorem 5 in [N1]. Since (X_1,L_1) are complete space, h: $(X_1,L_1) \longrightarrow (X_2,L_2)$ is a Cauchy homeomorphism.

5. Example.

Definition 5.1. Let $X \neq \emptyset$ and $\langle x_n \rangle$, $\langle y_n \rangle \in X^N$. We say that $\langle y_n \rangle$ is derived from $\langle x_n \rangle$, in symbols $\langle y_n \rangle \rightarrow \langle x_n \rangle$, if $F(\langle y_n \rangle) \supset F(\langle x_n \rangle)$, where $F(\langle x_n \rangle)$ denotes the filter generated by sections of a sequence $\langle x_n \rangle$.

Example 5.2. Let $\mathbf{x}_2 = (\max_{m \in \mathbb{N}} (\mathbf{x}_{mn})) \cup (\max_{m \in \mathbb{N}} (\mathbf{x}_{m})) \cup (\mathbf{x}_0)$. Let $\infty \in \mathbb{N}^{\mathbb{N}}$, $\mathbf{x}_0 \in \mathbb{N}$, $\mathbf{A} \subset (\max_{m \in \mathbb{N}} (\mathbf{x}_{mn}(\mathbf{x}_m)))$, and $\mathbf{x}_0 \in \{0,1\}^{2}$ a function on \mathbf{x}_2 defined as follows:

$$f(x) = 1 \text{ for } x \in (LU(_{n \in N} (x_{m_0}^n)) \cup (x_{m_0}^n)),$$

f(x) = 0 otherwise.

Let \overline{D} be the set of all such functions and (X_2, L_2) the Cauchy space projectively generated by \overline{D} . Let $X = \bigcup_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} (x_{mn})$,

 $x_1 = x \cup (\bigcup_{m \in N} (x_m))$, $L = L_2 \setminus x$, $L_1 = \{\langle z_n \rangle \in x_1^N; \langle z_n \rangle \cdot 3 \langle x \rangle$, $x \in x_1$, or $\langle z_n \rangle \cdot 3 \langle \langle x_m \rangle \rangle \wedge \langle \langle x_m \rangle \rangle$, meN?, and $D = \overline{D} \setminus x$.

Since (X,L) is clearly projectively generated by D it is also c-projectively generated by D and hence (X,L) possesses both a D-completion and a d-completion.

<u>Proposition 5.3.</u> For $\hat{D} = \overline{D} \mid X_1$ the space (X_1, L_1) is c-projectively generated by \hat{D} , but not projectively generated by \hat{D} .

<u>Hint</u>. $L_2 = \{\langle z_n \rangle \in \mathbb{Z}_2^M; \langle z_n \rangle - 3 \langle x \rangle, x \in \mathbb{Z}_2, \text{ or } \langle z_n \rangle - 3 (\langle x_m \rangle \wedge \langle x_n \rangle), \text{ or } \langle z_n \rangle - 3 (\langle x_m \rangle \wedge \langle x_0 \rangle) \}$ and $\langle x_m \rangle \in (L_2 \mid X_1 - L_1).$

Proposition 5.4. (X_1,L_1) is a d-completion of (X,L).

<u>Hint</u>. L = $\{\langle z_n \rangle \in x^{\overline{N}}; \langle z_n \rangle \rightarrow \langle x \rangle, x \in X, \text{ or } \langle z_n \rangle \rightarrow \langle x_{mn} \rangle, m \in N \}$.

Proposition 5.5. (X_2, L_2) is a D-completion of (X, L).

<u>Proposition 5.6.</u> \overline{D} and D endowed with the corresponding continuous Cauchy structures are not Cauchy-homeomorphic under the natural correspondence:

<u>Proof.</u> For otherwise (X_2, L_2) would be also a d-completion of (X, L), which would imply the existence of a Cauchy homeomorphism h: $(X_1, L_1) \longrightarrow (X_2, L_2)$ such that for each $x \in X$ we have h(x) = x.

Note 5.7. This shows that the condition (d) in Definition 3.1 is necessary and sufficient for the uniqueness of the d-completion up to a commuting Cauchy homeomorphism (cf. Theorem 3.4).

Note 5.8. Let (X,L) be a \hat{C} -embedded Cauchy space. Since for $D = \hat{C}(X,L)$ we have $L = L_d = L_D$, it follows immediately that a d-completion of (X,L) is also a D-completion of (X,L). Consequently, the two completions are equivalent. It might be of some interest to characterize classes $D \subset \hat{C}$ for which the two completions are equivalent.

References

- [I Kl J. IRWIN and D.C. KENT: Sequential Cauchy spaces, to appear.
- [F] R. FRIC: On sequential Cauchy spaces, to appear.
- [] J. NOVÁK: On sequential envelopes defined by means of certain classes of continuous functions, Czechoslovak Math. J. 18(93)(1968), 450-456.

Vysoká škola dopravná Department of Pure and Applied
Katedra matematiky F SET Mathematics,
Marka-Engelsa 25 Washington State University

Olo 88 Žilina Pullman, Washington 99163

Československo U. S. A.

(Oblatum 16.12. 1976)

