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Abstract: Simulations of Pawlak machines are shown to

be fuzzy morphisms (in the sense of Arbib and Manes) over
certain category of unary partial algebras.
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Intpcduction: When studying sutomats of the non-deter—

ministic type, M.A. Arbib and E.G. Manes introduced in [3]
the notion of fuzzy theory over the eategory K. In fact, it
is a category with the same class of objects as K in which
morphisms, i.e. fuzzy morphisms, from a to b ere morphisms
of the category K from a to the object T(b); T(b) being in-
terpreted as "the cloud of fuzzy states over the object of
pure states” (cf. {3)). Arbib and Manes show that when cer—
tain natural requirements for the composition of fuzzy mor=
phisms and for the relation between b and T(b) are fulfilled
the category with fuzzy morphisms is a Kleisli category of
suitable monad (cf. [31).
Essentially, an analogous approach is that of H. Ehrig and
eol. in [6].

In [3),(4] are found many examples of fuzzy theoriles,
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especially of fuzzy theories over the category of sets, which
among other things make possible the study of the non~-deter-
ministic sequential machines, stochastic sequential machines,
semiring automata etc.

In this paper we give another example of fuzzy theory -
we prove that simulations of Pawlak machines are fuzzy morph-

isms over certain category of unary partial algebras.

I. As mentioned in [3], fuzzy theories are closely rele-
ted to coreflective subcategories with the same class of ob-
jeets: let K be a coreflective subcategory of H, obj K =
= obj H, P: H—>K be a coreflector and J: K—> H the inclu-
sion functor. Put T = PoJ, Let e be the natural transforma-
tion from 1K to T, given by the adjoint situation, let ©
be the composition in the category H. Then (T,e,®) will be
a fuzzy theory over K in the sense of [3] and H isomorphic
to the category with fuzzy morphisms.

In fact, we prove that the category of all partial al-
gebras and all their homomorphisms of a certain type (ef.
below) is a coreflective subcategory of the category of all
Pawlak machines and all their simulations. These two cate—

gories have the same class of objects, as will become clear.

IT1. Let us recall that a Pawlak machine is an ordered
pair (A,f) in which £ is a partial mapping from A to A, i.e.
(A,f) is a partiai algebra with one unery operation (cf, [1]
and 12]). In accordance with [ 5] a mapping o« : £—>B is
said to be a simulation of (A,f) in (B,g) if two following
conditionms are fulfilled:

(YVaeA)(aeD(f) iff «(a)e D(g))
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k
(Vaen(£))1 (I, 21 (cctla)) = g *ela)))y

where D(£) and D(g) ere domains of £ and g respectively, kg
is an integer and gka denotes the karth iteration of g« (As
far as we know this notion of a simulation was f£irst concei-
ved by Z. Pawlak, although to our knowledge he has not pub-
lished as yet any paper in which this notion appe ars.)

An usual homomorphism of partial algebras o: (A,f) —
—»> (B,g) which is also a simulation (and in that case the
minimal k, = 1 for all ae D(£)) is called s-homomorphism.

The aim of this note is to prove the following propo-
sition.

Proposition: The category of all Pawlek machines and
all their s~homomorphisms is a coreflective subcategory of
the category of all Pewlak machines and all their gimula-

tions.

I1I. The mroof of the moposition

Deginition 1: A Pawlak machine (J,+) is said to Dbe ad-
ditive if J is either the set of all non-negative integers
or £0,0..,k} (k 18 non-negative) and if the partial mapp-
ing + ¢ J—> J 4s defined 4n the following way:

(1) 1eD(+) iff 1+ led
(2) (Y1eD(+)) (#(1) =1 + 1).

Definition 2: A simulation (resp. e-homomorphism) of
end additive Pawlak machine (J,+) in (4,£) 1s seld to be a
path (respe. g-path) in (A,f£).

Lepmg 1: Let U : (J,4) —> (&,£) be an s-path. Then
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(1) (Vked(Lk) = £5(L (0)))

(11) (Yk>0)(ked 1ff L (0)e DILX),

Proof: (i) we mrove easily by induction.

(i1) Let us have k>0, By definition 1l keJ iff k - l€
€ D(+). L is a simulation, thus k - 1€ D(+) iff L (k - 1) e
€ D(£). From (1) 1t follows that k - 1€ D(+) 1fe £5 (L (0))e
eD(f) 122 L (0)e D(£X). Hence, keJ 1ff o (0)e D(£5).

Lemmg 2: Let (A,f) be & Pawlak machine, let aeA. Then
there is only one s=-path L, in (A,f) such that L, (0) = &

Proof: 1. Let us have ae A« Define J,: 1€J, 1ff a €
eD(r}) (£9% 1), and + 1 Jp—>J,: 1€Dl+) i2£ 4 + 1ed,,
#(1) =1 + 1. Define (1) = £'(a). Obviously, L, 1s an
s-path.

2, Now, let L ¢ J—> & be an s-path, let L (0) = a.
By Lemma 1 keJ iff ¢ (0)€ D(£)¢1(0) = a€D(£%)) and Lk =

= £5(L(0)). Hence, J, = J and L, = L .

Construction. Let (A,f) be a Pawlak machine. Define
P((a,£)) =4<1, L >| L 18 a path in (A,£), 1eD(L) 2,
£°: P((A,£))—> PU(A,£)): 1.<4, L > e D(£") 1£f L (1) eD(f)
2, (<1, Ld) =<1 v1, ).
Then (P(¢A,£)),£°) is a Pawlak machine. Now we define the
binary relation R on P((A,f£)):
<i, t.1> R(J,‘Lz,) if there are J and a pair of s—-paths
19 U5 such that L ;(0) =4, L,(0) = J and the diagram

is eommutative:
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Jy "z

R is obviously reflexive and symmetric. It 1s also transiti-

ve: let <1,Ly?R <3, c.2> Bk, L3>. Then there is a com~

matative diagram

v /"3
11'1\ /d: Z’EA'\JS “

I

in which Uy, Ups Up and Ly are s-paths end C,0) =3 =
= (o),t.l(o) i, d(o) kX . Hence L2=L2,J48
=J by Lemma 2' and "ll‘l = LZ’LE = "2"'2 = Lyl 3. Thus
(1,0 B (K L3

R is a congruence on P((A, £)): let (1, L >R (j,Lp> end
<13,4y? e D(£°) (then <J,Lp? eD(2’) because L;(1) =

= "'2('1))‘ Then there is a commutative diagram

in which ¢ 1! L'z are s-paths. By Lemma 2 there is an s-path
v .13—;.1, such that G (0) = 1. Now define ') = Cret
y 7= Lzot.. Obviously, L1°L1= Lye Lzand Ll(O) =,
=4+, U,(0) =J+ 1. Thus,

£7(<1, ) =<1+, yL1 2R £°(< 3, L2>)=<3+1,L2}.
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Now, define £: P((A,£))/ R—>P({A,£))/ R:

1. [<i,023eD® 1£f <1, c>eD(£))

2. F(CC1, L23) =[£°(<1,L>)) =<1 +1,00].
(p((a,£))/ R,F) is a Pawlak machine, too. Let us define
e(A’f): P((A,£))/ R—>A e“'f)(k i,¢>31) = ¢ (1),
Obviously, this definition is correct and ﬁ“’r) is a si-
mulation of (P((A,£)/R,%) in (a,£).

Lemmg %: Let (B,g), (A,f) be Pawlak machines, let o
be a simulation of (B,g) in (A,f). Then there is the unique
s-homomorphism <& & (B,g) —> (P((A,£))/ R,%) such that the
following diagram is commutative

P((A,£))/ B
> Jean
B —T->&

Proof: Let us define & (a) =[<0, e L 2]( ¢, 18 an
s-path such that La(O) = a),

l. & is an s-homomorphism:

(1) aeD(g) ire o« (a)eDle) 122 [0, o L > eD(F)

(2) let aeD(g) ard b = g(a) = Lgll)e By Lemma 1 we
have je Jy, iff be Dg)) 1£e aeD(gI*h) 122 5 + 1€ .. De-

fine C : Jpy—>Jg, (1) =1+ 1, Then (,oc(0) =

a
= L ,(0). Hence, LooL = L, by Lemma 2 and the diagram

‘e, A QQL“,
ol \Jb
N

1s commutative and £(& (a)) = [ l,Le 21 =
=00, Lo LY = (gla))e
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Obviously, e(A,f)a < = O .

>, Let o be an s-homomorphism such that €(a,0)° &= x.
Let a€B, let x(a) =<1, L >1 . By Lemma 1 jeJ, iff

Z (a)e D(F), for & o Lg is an s-path. By the definition
ot T: &(ade D(gd) 1221 * jeD(L). Thus, L(i* N =
=eu,p° Ko Lg(y) = x e Lgld)e Nowy 1f we definme

(S J‘a-—>J J(§) =1+ §, the diagram

A
/ wow
J \ Ja
N~
J Ja,
a

js commutative. Hence, {0, o Lg>R<L, Ly, iee. = (a)

= &(a)e
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