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ON THE POSET OF TENSOR PRODUCTS ON THE UNIT INTERVAL

Jan MENU, Antwerpen and Jan PAVELKA, Preshe

: The paper is concerned with the way in which
the poset of all tensor poducts on_the unit interval I of
reals is embedded in the complete l1attice of all binary ope=
rations on I. The main result says that any lower-semiconti-
nuous commutative operation on 1 that has_O for zero and 1
for unit can be obtained as the Jjoin in 13#1 of a countab-
le family of tensor m oducts on I all of whose members are

isomorphic to xmy=0vix+y- 1).

words: Tensor product ¢ £ -monoid residuated lat-
tice, Eower-semicontinuity. ’ ’

AMS: O6A50, 22415 Ref. B.: 2.T21.65, 2.T21.67

Introduction. In [4) we considered various ways in
which I can be endowed with the structure of a symmetric
monoidal closed category. Recall that any tensor product 'on
I (that is, an isotone binary operation O * IxI—1 with
the proerties

.1} (1,0,1) is a commutative monoid;

(0,2) the distributive law

(VX)oa= Vixoal xeX3,

where \/ X denotes the supremum of X in I, holds for

sny X&I and any aell)
has a right adjoint h: IxI—> I, linked with O by the for-

mula
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(0.3) for all x,y,zeI, xay<z iff x<h(y,z).

The right adjoint h of o 1is uniquely determined by the
formula

(0.4) hi(x,y) =maxtteI|tnx<y?; x, yeI.

Also recall that a binary operation on I satisfies
(0.2) iff it is isotone, lower-semicontinuous, and has O
for zero.

If we generalize the above notion to an arbitrary com-
plete lattice L with the least element O and the greatest
element 1; then a binary operation o on L is a tensor pro-
duct iff (L,0) is an jntegral cf -monoid in the sense of
Birkhoff [1]. According to Dilworth and Ward [ 2], a tensor
product on L together with its right adjoint h endow L with

the structure of a resjduated lattice; O is then called
multiplication and h is called resjduyation in L.

In this paper we shall adhere to the terminology of [4]
and use the term "tensor product". Given a complete lattice
L we shall denote by $'(L) the set of all tensor products
on L partially ordered by the relation

(0.5) o «£0° 1iff xoy<xa’y holds for all x,ye€ L.
Thus, J°(L) is a subposet of the complete lattice O°(L) =

= LI'“' of all binary operations on L.

1. Some properties of the posets J(L)

l.1. Obgervation. Given a complete lattice L and D ,
0 € T (L) let h and h” be the right adjoints of o and
o’ , respectively. Then g &« o’ iff h(x,y)2 h’(x,y) holds

for any x,y € L.

- 330 -



Proof. It is easy to show that the adjointness condi-
tion (0.3) for a couple (o,h) on L is equivalent to the fol\-
Jowing couple of inequalities in (L,a ,h)

(A°) x&h(y,xoy) h(x,y)o x4y ("
1¢f o 40’ then by (A”") for (g’,h”) we have h'(x,y)o x 4
&«h’(x,y) o’ x4y hence n’(x,y) 4 h(x,y) for all x,yeL.

Similarly one proves the converse implication.

1.2. Obse t . If L is completely distributive then
the meet A in L is the greatest element of I (L).

Proof. By definition, (x,y) +—> =AYy i8 a tensor pro-
duct on L iff L is completely distributive. If DO € T (L)
we obtain by the isotony of o +the inequality

xoyé (xa1)A (Ao y) =xAY
for all x,yel. Thus A is the unit of J’(L) provided L is
completely distributive.

1.3. Remark. It is easily shown (see [21) that if L is,

moreover, boolean, J (L) = £A3.

1.4. Proposition. Ilet L be a complete chain. Then
4’ (L) has the least element iff 1 is isolated in L.
Proof. Given a complete chain L consider the operation

(o} if xvy<1l
(1.1) XAy =
XAY otherwise.

Clesrly, & € T (L) 1££1>V {x¢€ L] x+1} in L. Since & &
<O holds for any 0 € T (L) it suffices to show that for
any ASL\ 113} such that VA =1 there exists a system
{a, aek % of tensor products on L such that A =
=/\iual aeA? in the complete lattice 0’(L). To this end,
put
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0 if xvy<ca
(1.2) x0gy {

XA Y otherwise

for any a€ A and x,y€ L. Then it is easily verified that the
family 40,5 ae€ A} has the desired properties.

1.5. Propogition. If L is a complete lattice and €L
is a nonempty chain in J'(L) then the join of <4 in 0°(L)
is again a tensor mroduct on L.

Proof. Assume that @ # € 1is a chain of tensor pro-
ducts on L. We have to verify that
(1.3) xay=Vizxoy |oe %}

is a tensor product on L. Obviously, & 1s commutative, dis-
tributive with respect to all joins in L, and it has O for
zero and 1 for unit. As to the associativity, take any x,y,
zel. We have (xAylaz =
=V{i{(Vixoy |loe X} lutxlo'e &3
=V {Vi(xay)a’z|oe @ }|n'e s}
=V4{ (xa”y) o” z |a”
=V4{ xo”(ya“z) | ” = mex(a ,0"); a,0”e €3
=V4{V4{xalyosz) |o’etti|aeks =
=V{ xaV4{ysz |o'ethsi|oe®t =xa(yaz).

max(a ,n); o,0"e 3

2. A result concerning J°(I). Let us now consider the
case when L = I ig the unit intervel of real numbers. Let
Us T(I), L+ @, and let & =VE® in 0 (I). If we
omit the requirement that ¥4 be a chain, & is again iso-
tone, commutative, lower-semicontinuous, and has O for zero
and 1 for unit. On the other hand, it need not by far be asso-
ciative; in fact, we shall show that any binary operation A
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on I that fulfils the above mentioned conditions can be ob-
tained as a Jjoin in 0’(I) of a countable family {ayie
€Ew? of tensor products on I. Moreover, we can ensure
that each 0O is continuous,the semigroup (I, o4) hoes mo
jdempotents other then O and 1 and all elements of IN4 1%
are nilpotent in (I, 0;); in other words (L51), that each
semigroup (I, Di) is isomorphic to (I, @ ) where

(2.1) x@By=0Vx+y- 1) for all x,y€I.

2.1. Theorem. Let & be an isotone, commutative and
1 ower-semicontinuous binary operation on I such that xn0 =
=0 and xA1 =X holds for any X € I. Then there exists a
countable set €t or tensor products on I isomorphic to the
product B given by (2.1) so that
(2.2) xAy=\/{xuy\ae%}

holds for all x,y €I
Proof. We shall need the following lemma which follows:
immediately from the lower gemicontinuity of A& .

2.1,1. Lemma. with & as in the assumptions of 2.1
let D be a dense subset of I and let x,yl,-..,yn,zl,..'.,zn,
wel so that xAxX>Ww and X8 ¥4> 24 for each i = 1,.00,0e
Then for every u<Xx there exists dé D with the properties

u< d<x, doad>w, and dAy;> Zye

2.1.2. Assume given a that satisfies the assumptions
of 2.1 and some a, b, © with
(2.3) O<bga<l, 0< & < adb.

We are going to prove that there exists an order-isomorphism

£: I=I such that the tensor product mf on I defined by
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the formula

(2.4) xm Ty = exm £y), all x,yel

satisfies the inequalities

(2.5) amib>aab - ¢ y X nyéxAy for all x,ye€ I.

Choose a countable dense subset DEI so that O, 1&D.

Now assume we have constructed a family
(2.6) 14, ,; n25, 32xs2™ 3
?

with the properties

(a) D={a, . |nz5, Jexe2® 3,

(b) 'L>dn'3> dn,4"“ >dn,2n_1> dn’zn = 0 for any
nz5;

(e) @y y = dpyq oy fOr any n25, 34k 427

(a) dn,kAd
k+pe2® +2;

n,p” dn,k+p—2 whenever n>5, 3%k, p, and

(e) a>d5,13, b>d; g, and aAb - € < d5 3pe

Then the map dn,k — 1 - k&/2° 18 an order-preserving bijec-
tion between DU 403 and the set of all (notice that
dnyg,g F> 1 - 2/2% and 4, o> 1 - 1/2") dyadie ration-
als in the interval L 0,2 [ , which is dense in I, too. Its
unique extension f to the whole of I is an order-isomorph-
ism I® I with the property

(2.7) for eny nZ“j and any k,p = 3,...,2°,

£
dl;ks 9,p = 9n,min(2®,k+p)*

We have xaAl =xm‘1 =x, XAO = x mfo = 0 for any xe€1I.
Next, if O<x, y<1 we can take the first n=5 with dn 3> X,
’

y>dn’2n_1 (this n certainly exists because D is dense in I)
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and consider the last k and p in £3,0..,2" 3 with dp 2%

and dn’pz y, respectively. Then "dn,k*—l’ y>dn'pﬂ, and

n £ £
either k + p>2 whence x 8 yédn,kﬁ dn,p =204£XDY,

{ or k + pﬁzn whence x asfyédn.k Btdn,p =

= dn’k'.'p‘ dn,k+1A dn,p"lé XAy
f £
1 btain from (e) that bzd |=d
Finally we obtal om (e at a B 5,13 5,18 =
= d5,31> aAb~-¢© .

Thus we only have to construct the family (2.6). Choose
a sequence e5< eg<eeo<8p oo with en/'.l. and fix a well-
ordering of the countable dense set D (when we mention the
first element of some nonempty subset of D in the sequel we
shall be referring to just this ordering). We shall proceed
by induction on ne

I. For n = 5 first choose d29e D with aab - € < d29<
< aAb.

Since aAb>d29 it follows from 2.l.l that there existe
d,lseD such that d29< d‘18< b, aA dyg> d29.

Similarly we can use 2.1.1 and the last inequality to en-
sure the existence of some d,3€ D with d18<-d13.\< a, dp34 49>
> d2’9'

Next there exists d,]_.?eD so that di8< d17< d13, and
47298~ d29°

Now pick d14 through d‘16' and d19 through d23 so that
dyq< dyg< Iy 5< g 4< 413 204 Op9< dy3< dpp< dpq< dpo< d1g < dyg°
Because A 1is isotone we have

apa dpz d”A d‘18> d29

whenever 13£ k<17, 13£ p£18 so that we can successively pick
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elemrents d24 through d28 with the properties

dp9< dpg< dp3 A (438 4,5),

dpg< dyg<dy A ldg30dy,),

dyg< dyg<dygA (d13Ad,15) A (d,“A d'.l.4) ,

dyg< dpq< dag A (A58 1) A (g a0 5),

dyg<dyg<dynA(dy30dy.) Ald) 84 ) A (d1584y5).
Finally we choose d3° and d3’l 8o that aab - € < d3,1< d3°<
< d29 and put d32 = 0.

Since 141>d,, and 144y = d, > d10+k for each k =13,...
¢++422, Lemma 2.1.1 guarantees the existence of some 4,,€D
such that d,,4 d12> d22 and d,,4 4, > d10+k for all k =13,...
eee422. We pick one and proceed similarly in all the remain-

ing steps. Thus we obtain in turn:

dgq € D with dyp8dy, > 4o and 4y, 4 4 > d9+k; k =12,...,23;

dyo€ D with 4)58d)5>dyg and dygady>dgy. = 11,,,.,24;

d4¢D with d4Ad4>d6 and d4A dk> dZ#k; k=5,...,30;
and finally dye D with dy>eg, d3ady>d,, and dyd dp>dy 0
k = 4,...,31. ’

Since A 1is commutative, putting dS,k = dk for k = 3,440
eee932 ylelds a finite sequence that fulfils, for the fixed
n =5, the conditions (b),(a),and (e).

II. Induction step. Assume given a family
“dm,k; 5£mén, 3£k £2™ 3 such that every dm,k belongs to
D, the conditions (b) and (d) are satisfied for all mé&n, the
condition (c¢) is satisfied for all m&n - 1, the condition
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(e) is satisfied, and dj 3> €p holds for each m = 5jeec,0e
L
- n —
For any k = 3,000,2 put dm-’l,?k = dn,k' Then take the
first element d of the nonempty subset

gted|tedy 33 NEaglk= Byeserl §

in D. There exists the unique kg such that 3£k, 22" -1 and

dn,k°+1<d<dn k" Put dpey ok 41 = a (this, together with

d, 3> ®n A1, ensures that all elements of D will eventually
1]

get included in our family). For k+k,, 3L x4£2" - 9 pick an
arbitrary element dn+1,2k*le D so that 4, < dn+1,2k¥1‘d
We have defined sll the members dp.y i 64k 42", Obviously

>.0e>d 2n-"il = 0.

I’dnﬂ,G,dn*’lﬂ n+l,

Now we shall verify that
dne ,kA dn+1 P >dne ,k+p-2
holds whenever 64k, p and k + p&2™1 4 2. Ve shall distin-

guish the following three cases.
1. Ifkx=2r and p = 28 then r#sézn-'-'landbytht

induction hypothesis we have dnﬂ,kA dm’l,p = dn,rA dn,e >
> dn,r#s-z = dn#l,k+p—4> dn*‘l,k+p-2’
2, If exactly one of the numbers k, p is odd, e.ge k =
n
= 2r 28 +1 thenr +8£2 + 1 and have d a
, Pp=28 e and we have dp.n y
e d1'14'1,1:»?' dn,z‘A dn,a*’l>dn,r*e-’1 = dnﬂ,k+p-3>dn+1,k¢p-2'
3. Ifk=2r+landp=23#1thenr*862nandwe
have dpyy @ dne1,p= dp,rn® dn,sﬂ;'dn,rw = dp4q, kep-2°
It remains to define dnﬂ,k for k = 3,4, and 5. Again

we recall 2.1.1 and choose successively
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d €D go that 4

n+1,5 n+1,52%1,57 941, 04 dppg 5440, >

> dpey 34y for each k = By ns2 00 = 5

dn’1’4eD 8o that dn+‘.l,4A dn*ﬂ.,4> dn-#].,G and dn+1,4A dn+1,k>
>4, 41 2y fOT each k = 5,000,201 - 2,
and finally

d €D so that 4

n+l,3 n+1,3™ %ne1r 9ne1,32%041,3 7 neq 40 a0d

= +1
41,3 %%01, ™ %neq 14k TOF each k = 4,...,2" 1.
2.1.3. Let A satisfy the assumptions of 2.1. Take &
countable dense subset D of I whieh misses O and 1. Since 1

is the unit in (I,A) and A is lower-semicontinuous the set
(2.8 A = {(a,b,m)|a,beD,aZb, aab>1/m ?

is infinite countable. Owing to 2.1.2 we can select for each
(a,b,m) € A a tensor product Og,p,m 0 I 80 that the ordered
semigroups (I, Da,b,m) and (I, 8 ) are isomorphic, xna,b'myé
4 x4ay holds for all x,yeI, and e, , b>aab - 1/m.

t | gt ]

We set
(2.9) xoy= V4{x Og,b, 0’ ) (a,b,m)e A}, all x,yel.

Clearly o0 € Ao holds in (°(I). Now suppose there exist x,
yel with xoy<xaAay. Then x,y40,1. Since A 1is lower-semi-
continuous there exist x;< x and Y1 <Y such that x y<x;ay;.
Because D is dense in I we can take some a,be D with x<a<
< x, yy< b<y, and, say, a=b. For every natural number m >
>1/(xy8 ¥, = x0y) we then have a0 b.’:ana’b’nb>aab -
-1/m2xAy; - 1/m>x yza b, which is absurd. Thus O = A
and the proof of 2.1 is complete.

2.2. Corollary. For any m , D'6€ 3 (I) the operation

- 338 -



A defined on I by the formula
(2.0} xay = (xay) A (x o'y

fulfils the assumptions of 2.1 hence & = VO in (1)
for some subset @ # O &J(I). Thus, if the couple 0,0 %
has a meet in 4°(I) then the meet necessarily coincides with
(220). Conclusion: £0,0°% has a meet in J(I) iff the
operation (2J0) is associative.

2.3. Corollary. Owing to 2.2 it now suffices to find an
example of two tensor products on I whose meet in 0(1) is
not associative in order to prove that J°(I) is not a lower

semilattice.

Example. Let 0 =B and let 0'= @ £ yhere the order
isomorphism £: I=~T is defined by the formula
x 1f 04 x4£1/8 or 1/2£x£1
(2.11) fx = { ox - 1/8 if 1/8£x41/4
/2 +1/4 if 1/AL£x£1/2.

Then
vam® /8 = 3/4m1/8 = 5/8,
sye @t 1/2 = 5/8 ®1/2 = 1/8,
e mt 1/z = £1(3/8) =1/4<3/8 = /88 1/2,
yva @t 1/a = £H3/4m3/8) = ¢ M/8) =1/8>0 =
= 3/4 8 1/4
hence

(3/4a7/8)a1/2 = 5/881/Z = 1/8>0 = 3/481/4 =
= 3/4a(7/84a1/2)

and the meet Ao of o and o’ in 0°(I) is not associative.
Conclusion: 4" (1) is not a lower semilattice.
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2.4. Corollary. If J(I) were an upper semilattice then
by Proposition 1.5 all nonempty joins would exist in T(I).
In particular, for any o, O € T (I) the nonempty set of
all lower bounds of €@, 0% in JY(I) would have a join
in J(I), which contradicts 2.3. Conclusion: 3°(I) is not

an upper semilattice either.

2.5. Remark. On the other hand, it follows trivially
from 2.1 that any O e J°(I) is a join in T (I) of a count=-
able set of elements isomorphic to 88 . In view of 1.5 it is
natural to conjecture that there always exists even a non-de-
creasing sequence § O, ;n € @ § of isomorphs of B8 so that

n,”7o . This, however, remains an open question.
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