

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log37

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

ON THE POSET OF TENSOR PRODUCTS ON THE UNIT INTERVAL

Jan MENU, Antwerpen and Jan PAVELKA, Praha

Abstract: The paper is concerned with the way in which the poset of all tensor products on the unit interval I of reals is embedded in the complete lattice of all binary operations on I. The main result says that any lower-semicontinuous commutative operation on I that has 0 for zero and 1 nuous commutative operation on I that has 0 for zero and 1 for unit can be obtained as the join in $I^{1\times 1}$ of a countable family of tensor products on I all of whose members are isomorphic to $x \to y = 0 \lor (x + y - 1)$.

 $\frac{\text{Key words}}{\text{lower-semicontinuity}} \colon \text{Tensor product, } \mathfrak{el-monoid, residuated lattice, lower-semicontinuity}.$

AMS: 06A50, 22A15 Ref. Z.: 2.721.65, 2.721.67

<u>Introduction</u>. In [4] we considered various ways in which I can be endowed with the structure of a symmetric monoidal closed category. Recall that any tensor product on I (that is, an isotone binary operation $\square: I \times I \longrightarrow I$ with the properties

- (0.1) (I, a,1) is a commutative monoid;
- (0,2) the distributive law

 $(\bigvee X)_{\square} a = \bigvee \{ x_{\square} a \mid x \in X \},$

where $\bigvee X$ denotes the supremum of X in I, holds for any $X \subseteq I$ and any $a \in I$

has a right adjoint h: $I \times I \longrightarrow I$, linked with \Box by the formula

- (0.3) for all $x,y,z \in I$, $x \cap y \le z$ iff $x \le h(y,z)$. The right adjoint h of \Box is uniquely determined by the formula
- (0.4) h(x,y) = max {t∈ I | t□x ≤ y }; x, y ∈ I.
 Also recall that a binary operation on I satisfies
 (0.2) iff it is isotone, lower-semicontinuous, and has 0
 for zero.

If we generalize the above notion to an arbitrary complete lattice L with the least element O and the greatest element 1; then a binary operation on L is a tensor product iff (L, o) is an integral cl-monoid in the sense of Birkhoff [1]. According to Dilworth and Ward [2], a tensor product on L together with its right adjoint h endow L with the structure of a residuated lattice; or is then called multiplication and h is called residuation in L.

In this paper we shall adhere to the terminology of [4] and use the term "tensor product". Given a complete lattice L we shall denote by $\mathcal{T}(L)$ the set of all tensor products on L partially ordered by the relation

(0.5) $\square \leq \square'$ iff $x \square y \leq x \square' y$ holds for all $x, y \in L$. Thus, $\mathcal{T}(L)$ is a subposet of the complete lattice $\mathcal{O}'(L) = L^{L \times L}$ of all binary operations on L.

1. Some properties of the posets $\mathcal{T}(L)$

1.1. Observation. Given a complete lattice L and D, $G' \in \mathcal{F}(L)$ let h and h' be the right adjoints of D and D', respectively. Then $G \not\subseteq G'$ iff $h(x,y) \ge h'(x,y)$ holds for any $x,y \in L$.

<u>Proof.</u> It is easy to show that the adjointness condition (0.3) for a couple (,h) on L is equivalent to the following couple of inequalities in (L, ,h)

- (A') $x \le h(y, x \square y)$ $h(x,y) \square x \le y$ (A'')

 If $\square \le \square'$ then by (A'') for (\square',h') we have $h'(x,y) \square x \le y$ $\le h'(x,y) \square' x \le y$ hence $h'(x,y) \le h(x,y)$ for all $x,y \in L$.

 Similarly one proves the converse implication.
- 1.2. Observation. If L is completely distributive then the meet \wedge in L is the greatest element of $\mathcal{T}(L)$.

<u>Proof.</u> By definition, $(x,y) \longmapsto x \wedge y$ is a tensor product on L iff L is completely distributive. If $\square \in \mathcal{T}(L)$ we obtain by the isotony of \square the inequality

$$x \square y \le (x \square 1) \land (1 \square y) = x \land y$$

for all x,y \in L. Thus \wedge is the unit of $\mathcal{F}(L)$ provided L is completely distributive.

- 1.3. Remark. It is easily shown (see [2]) that if L is, moreover, boolean, $\mathcal{F}(L) = \{ \land \}$.
 - 1.4. Proposition. Let L be a complete chain. Then $\mathfrak T(L)$ has the least element iff 1 is isolated in L.

Proof. Given a complete chain L consider the operation

(1.1)
$$x \triangle y = \begin{cases} 0 & \text{if } x \lor y < 1 \\ x \land y & \text{otherwise.} \end{cases}$$

Clearly, $\Delta \in \mathcal{T}(L)$ iff $1 > \bigvee \{x \in L \mid x \neq 1\}$ in L. Since $\Delta \in \mathcal{T}(L)$ holds for any $C \in \mathcal{T}(L)$ it suffices to show that for any $A \subseteq L \setminus \{1\}$ such that $\bigvee A = 1$ there exists a system $\{C_a\}$ a $\in A\}$ of tensor products on L such that $\Delta = \{A \in C_a\}$ in the complete lattice $\mathcal{T}(L)$. To this end, put

(1.2)
$$x D_{a} y = \begin{cases} 0 & \text{if } x \lor y \le a \end{cases}$$

$$x \land y & \text{otherwise}$$

for any $a \in A$ and $x,y \in L$. Then it is easily verified that the family $\{ \Box_{a} : a \in A \}$ has the desired properties.

1.5. Proposition. If L is a complete lattice and $\mathcal U$ is a nonempty chain in $\mathcal T(L)$ then the join of $\mathcal U$ in $\mathcal T(L)$ is again a tensor product on L.

<u>Proof.</u> Assume that $\emptyset + \mathcal{C}\mathcal{K}$ is a chain of tensor products on L. We have to verify that

(1.3)
$$x \triangle y = \bigvee \{x \Box y \mid \Box \in \mathcal{C} \mathcal{C} \}$$

is a tensor product on L. Obviously, Δ is commutative, distributive with respect to all joins in L, and it has 0 for zero and 1 for unit. As to the associativity, take any x,y, $z \in L$. We have $(x \Delta y) \Delta z =$

- 2. A result concerning $\mathcal{T}(I)$. Let us now consider the case when L=I is the unit interval of real numbers. Let $\mathscr{CU}\subseteq \mathcal{T}(I)$, $\mathscr{U}\neq\emptyset$, and let $\Delta=V\mathscr{U}$ in $\mathcal{T}(I)$. If we omit the requirement that \mathscr{U} be a chain, Δ is again isotone, commutative, lower-semicontinuous, and has 0 for zero and 1 for unit. On the other hand, it need not by far be associative; in fact, we shall show that any binary operation Δ

on I that fulfils the above mentioned conditions can be obtained as a join in $\mathcal{O}(I)$ of a countable family $\{\Box_i; i \in A\}$ ϵ ω $\}$ of tensor products on I. Moreover, we can ensure that each \square_i is continuous, the semigroup (I, \square_i) has no idempotents other than O and 1 and all elements of I \smallsetminus 413 are nilpotent in (I, D;); in other words ([5]), that each semigroup (I, \square_1) is isomorphic to (I, \boxplus) where $x \boxplus y = 0 \lor (x + y - 1)$ for all $x, y \in I$. (2.1)

2.1. Theorem. Let A be an isotone, commutative and lower-semicontinuous binary operation on I such that x 0 = = 0 and $x \triangle 1 = x$ holds for any $x \in I$. Then there exists a countable set ex or tensor products on I isomorphic to the product B given by (2.1) so that

(2.2)
$$x \Delta y = \sqrt{1 \times 0} y | 0 \in \mathcal{CL}$$

holds for all x,y & I.

Proof. We shall need the following lemma which follows: immediately from the lower semicontinuity of Δ .

- 2.1.1. Lemma. With Δ as in the assumptions of 2.1 let D be a dense subset of I and let $x, y_1, \dots, y_n, z_1, \dots, z_n$ weI so that $x \triangle x > w$ and $x \triangle y_i > z_i$ for each i = 1, ..., n. Then for every u < x there exists $d \in D$ with the properties u < d < x, $d \triangle d > w$, and $d \triangle y_i > z_i$.
- 2.1.2. Assume given Δ that satisfies the assumptions of 2.1 and some a, b, & with

We are going to prove that there exists an order-isomorphism f: I≈I such that the tensor product ⊞ f on I defined by

the formula

(2.4)
$$x = f^{-1}(fx = fy)$$
, all $x, y \in I$

satisfies the inequalities

(2.5)
$$a \oplus f_{b>a \triangle b} - \varepsilon$$
, $x \oplus f_{y \neq x \triangle y}$ for all $x, y \in I$.

Choose a countable dense subset $D \subseteq I$ so that 0, $1 \notin D$. Now assume we have constructed a family

(2.6)
$$\{d_{n,k}; n \ge 5, 3 \le k \le 2^n \}$$

with the properties

(a)
$$D = \{d_{n,k} \mid n \ge 5, 3 \le k < 2^n \}$$
;

(b)
$$1 > d_{n,3} > d_{n,4} > \dots > d_{n,2} = 0$$
 for any $n \ge 5$;

(c)
$$d_{n,k} = d_{n+1,2k}$$
 for any $n \ge 5$, $3 \le k \le 2^n$;

(d) $d_{n,k} \triangle d_{n,p} > d_{n,k+p-2}$ whenever $n \ge 5$, $3 \le k$, p, and $k + p \le 2^n + 2$;

Then the map $d_{n,k} \longmapsto 1 - k/2^n$ is an order-preserving bijection between $D \cup \{0\}$ and the set of all (notice that $d_{n+1,4} \longmapsto 1 - 2/2^n$ and $d_{n+2,4} \longmapsto 1 - 1/2^n$) dyadic rationals in the interval [0,1], which is dense in I, too. Its unique extension f to the whole of I is an order-isomorphism $I \approx I$ with the property

(2.7) for any $n \ge 5$ and any $k, p = 3, ..., 2^n$,

$$d_{n,k} \oplus f_{d_{n,p}} = d_{n,\min(2^n,k+p)}$$

We have $x \triangle 1 = x \boxplus ^{f} 1 = x$, $x \triangle 0 = x \boxplus ^{f} 0 = 0$ for any $x \in I$. Next, if 0 < x, y < 1 we can take the first $n \ge 5$ with $d_{n,3} > x$, $y > d_{n,2} n_{-1}$ (this n certainly exists because D is dense in I) and consider the last k and p in $\{3,\ldots,2^n\}$ with $d_{n,k} \ge x$ and $d_{n,p} \ge y$, respectively. Then $x > d_{n,k+1}$, $y > d_{n,p+1}$, and $\begin{cases} \text{either k} + p > 2^n \text{ whence } x \boxplus^f y \le d_{n,k} \boxplus^f d_{n,p} = 0 \le x \triangle y, \\ \text{or k} + p \le 2^n \text{ whence } x \boxplus^f y \le d_{n,k} \boxplus^f d_{n,p} = 0 \le x \triangle y, \end{cases}$

= $d_{n,k+p} < d_{n,k+1} \triangle d_{n,p+1} \le x \triangle y$.

Finally we obtain from (e) that a $m^{f}b \ge d_{5,13} = d_{5,13} = d_{5,31} > a \triangle b - \varepsilon$.

Thus we only have to construct the family (2.6). Choose a sequence $e_5 < e_6 < \dots < e_n$... with $e_n \nearrow 1$ and fix a well-ordering of the countable dense set D (when we mention the first element of some nonempty subset of D in the sequel we shall be referring to just this ordering). We shall proceed by induction on n.

I. For n = 5 first choose $d_{29} \in D$ with $a \triangle b - \varepsilon < d_{29} < a \triangle b$.

Since a Δ b > d₂₉ it follows from 2.1.1 that there exists d₁₈ \in D such that d₂₉ < d₁₈ < b, a Δ d₁₈ > d₂₉ .

Similarly we can use 2.1.1 and the last inequality to ensure the existence of some $d_{13} \in D$ with $d_{18} < d_{13} < a$, $d_{13} \triangle d_{18} > d_{29}$.

Next there exists $d_{17} \in D$ so that $d_{18} < d_{17} < d_{13}$ and $d_{17} \triangle d_{18} > d_{29}$.

Now pick d_{14} through d_{16} , and d_{19} through d_{23} so that $d_{17} < d_{16} < d_{15} < d_{14} < d_{13} \text{ and } d_{29} < d_{23} < d_{22} < d_{21} < d_{20} < d_{19} < d_{18}.$ Because \triangle is isotone we have

$$d_k \triangle d_p \ge d_{17} \triangle d_{18} > d_{29}$$

whenever $13 \le k \le 17$, $13 \le p \le 18$ so that we can successively pick

elements d_{24} through d_{28} with the properties

 $\begin{aligned} & d_{29} < d_{24} < d_{23} \wedge (d_{13} \triangle d_{13}), \\ & d_{29} < d_{25} < d_{24} \wedge (d_{13} \triangle d_{14}), \\ & d_{29} < d_{26} < d_{25} \wedge (d_{13} \triangle d_{15}) \wedge (d_{14} \triangle d_{14}), \\ & d_{29} < d_{27} < d_{26} \wedge (d_{13} \triangle d_{16}) \wedge (d_{14} \triangle d_{15}), \\ & d_{29} < d_{28} < d_{27} \wedge (d_{13} \triangle d_{17}) \wedge (d_{14} \triangle d_{16}) \wedge (d_{15} \triangle d_{15}). \end{aligned}$

Finally we choose d_{30} and d_{31} so that $a \triangle b - \epsilon < d_{31} < d_{30} < d_{29}$ and put $d_{32} = 0$.

Since $1 \triangle 1 > d_{22}$ and $1 \triangle d_k = d_k > d_{10+k}$ for each $k = 13, \ldots$...,22, Lemma 2.1.1 guarantees the existence of some $d_{12} \in D$ such that $d_{12} \triangle d_{12} > d_{22}$ and $d_{12} \triangle d_k > d_{10+k}$ for all $k = 13, \ldots$...,22. We pick one and proceed similarly in all the remaining steps. Thus we obtain in turn:

 $d_{11} \in D$ with $d_{11} \triangle d_{11} > d_{20}$ and $d_{11} \triangle d_k > d_{9+k}$; k = 12, ..., 23; $d_{10} \in D$ with $d_{10} \triangle d_{10} > d_{18}$ and $d_{10} \triangle d_k > d_{8+k}$; k = 11, ..., 24;

 $d_4 \in D$ with $d_4 \triangle d_4 \ge d_6$ and $d_4 \triangle d_k \ge d_{2+k}$; $k = 5, \dots, 30$; and finally $d_3 \in D$ with $d_3 \ge e_5$, $d_3 \triangle d_3 \ge d_4$, and $d_3 \triangle d_k \ge d_{1+k}$; $k = 4, \dots, 31$.

Since Δ is commutative, putting $d_{5,k} = d_k$ for k = 3,... ..., 32 yields a finite sequence that fulfils, for the fixed n = 5, the conditions (b),(d),and (e).

II. Induction step. Assume given a family $\{d_{m,k}; 5 \le m \le n, 3 \le k \le 2^m \}$ such that every $d_{m,k}$ belongs to D, the conditions (b) and (d) are satisfied for all $m \le n$, the condition (c) is satisfied for all $m \le n - 1$, the condition

(e) is satisfied, and $d_{m,3} > e_m$ holds for each m = 5,...,n. For any $k = 3,...,2^n$ put $d_{n+1,2k} = d_{n,k}$. Then take the first element d of the nonempty subset

 $\{ t \in D \mid t < d_{n,3} \} \setminus \{ d_{n,k} \mid k = 3,...,2^n \}$

in D. There exists the unique k_0 such that $3 \le k_0 \le 2^n - 1$ and $d_{n,k_0+1} < d < d_{n,k_0}$. Put $d_{n+1,2k_0+1} = d$ (this, together with $d_{n,3} > e_n \nearrow 1$, ensures that all elements of D will eventually get included in our family). For $k+k_0$, $3 \le k \le 2^n - 1$ pick an arbitrary element $d_{n+1,2k+1} \in D$ so that $d_{n,k+1} < d_{n+1,2k+1} < d_{n,k+1} < d_{n+1,2k+1} < d_{n,k+1} < d_{n+1,2k+1} < d_{n,k+1} < d_{n+1,2k+1} < d_{$

Now we shall verify that

holds whenever $6 \le k$, p and $k + p \le 2^{n+1} + 2$. We shall distinguish the following three cases.

- 1. If k=2r and p=2s then $r+s \neq 2^n+1$ and by the induction hypothesis we have $d_{n+1}, k^{\Delta} d_{n+1}, p=d_{n,r}^{\Delta} d_{n,s} > d_{n,r+s-2} = d_{n+1}, k+p-4 > d_{n+1}, k+p-2$
- 2. If exactly one of the numbers k, p is odd, e.g. k = 2r, p = 2s + 1 then $r + s \le 2^n + 1$ and we have $d_{n+1,k} \triangle d_{n+1,p} \ge d_{n,r} \triangle d_{n,s+1} > d_{n,r+s-1} = d_{n+1,k+p-3} > d_{n+1,k+p-2}$.
- 3. If k = 2r + 1 and p = 2s + 1 then $r + s \le 2^n$ and we have $d_{n+1,k} \triangle d_{n+1,p} \ge d_{n,r+1} \triangle d_{n,s+1} \ge d_{n,r+s} = d_{n+1,k+p-2}$.

It remains to define $d_{n+1,k}$ for k=3,4, and 5. Again we recall 2.1.1 and choose successively

 $d_{n+1,5} \in D$ so that $d_{n+1,5} \triangle d_{n+1,5} > d_{n+1,8}$ and $d_{n+1,5} \triangle d_{n+1,k} > d_{n+1,3+k}$ for each $k = 6,...,2^{n+1} - 3$;

 $d_{n+1,4} \in D$ so that $d_{n+1,4} \triangle d_{n+1,4} \ge d_{n+1,6}$ and $d_{n+1,4} \triangle d_{n+1,k} \ge d_{n+1,2+k}$ for each $k = 5, \dots, 2^{n+1} - 2$; and finally

 $d_{n+1,3} \in D$ so that $d_{n+1,3} > e_{n+1}$, $d_{n+1,3} \triangle d_{n+1,3} > d_{n+1,4}$, and $d_{n+1,3} \triangle d_{n+1,k} > d_{n+1,1+k}$ for each $k = 4, \dots, 2^{n+1} - 1$.

2.1.3. Let \triangle satisfy the assumptions of 2.1. Take a countable dense subset D of I which misses 0 and 1. Since 1 is the unit in (I, \triangle) and \triangle is lower-semicontinuous the set (2.8) $A = \{(a,b,m) | a,b \in D, a \ge b, a \triangle b > 1/m \}$

is infinite countable. Owing to 2.1.2 we can select for each $(a,b,m)\in A$ a tensor product $\square_{a,b,m}$ on I so that the ordered semigroups $(I,\square_{a,b,m})$ and $(I, \boxtimes B)$ are isomorphic, $x\square_{a,b,m}y \leq x \triangle y$ holds for all $x,y \in I$, and $a\square_{a,b,m}b > a \triangle b = 1/m$.

We set

(2.9) $x \circ y = \bigvee \{ x \square_{a,b,m} y \mid (a,b,m) \in \mathbb{A} \}$, all $x,y \in \mathbb{I}$. Clearly $0 \neq \triangle$ holds in $O'(\mathbb{I})$. Now suppose there exist x, $y \in \mathbb{I}$ with $x \circ y < x \triangle y$. Then $x,y \neq 0,1$. Since \triangle is lower-semicontinuous there exist $x_1 < x$ and $y_1 < y$ such that $x y < x_1 \triangle y_1$. Because D is dense in I we can take some $a,b \in D$ with $x_1 < a < x$, $y_1 < b < y$, and, say, $a \geq b$. For every natural number $m > 21/(x_1 \triangle y_1 - x \circ y)$ we then have $a \circ b \geq a \square_{a,b,m} b > a \triangle b = 1/m \geq x_1 \triangle y_1 - 1/m > x$ $y \geq a$ b, which is absurd. Thus $0 = \triangle$ and the proof of 2.1 is complete.

2.2. Corollary. For any u, u'e 3 (I) the operation

△ defined on I by the formula

(2.10)
$$x \triangle y = (x \square y) \wedge (x \square' y)$$

fulfils the assumptions of 2.1 hence $\Delta = \bigvee \mathcal{H}$ in $\mathcal{O}(I)$ for some subset $\emptyset + \mathcal{H} \subseteq \mathcal{T}(I)$. Thus, if the couple $\{\Box, \Box'\}$ has a meet in $\mathcal{T}(I)$ then the meet necessarily coincides with (2.10). Conclusion: $\{\Box, \Box'\}$ has a meet in $\mathcal{T}(I)$ iff the operation (2.10) is associative.

2.3. Corollary. Owing to 2.2 it now suffices to find an example of two tensor products on I whose meet in $\mathcal{O}(I)$ is not associative in order to prove that $\mathcal{T}(I)$ is not a lower semilattice.

Example. Let $\square = \mathbb{B}$ and let $\square' = \mathbb{B}$ where the order isomorphism $f \colon I \approx I$ is defined by the formula

Then

hence

$$(3/4\Delta7/8)\Delta1/2 = 5/8\Delta1/2 = 1/8>0 = 3/4\Delta1/4 = 3/4\Delta(7/8\Delta1/2)$$

and the meet \triangle of \square and \square' in $\mathcal{O}(I)$ is not associative. Conclusion: $\mathcal{J}'(I)$ is not a lower semilattice.

- 2.4. <u>Corollary</u>. If $\mathcal{T}(I)$ were an upper semilattice then by Proposition 1.5 all nonempty joins would exist in $\mathcal{T}(I)$. In particular, for any \square , $\square' \in \mathcal{T}(I)$ the nonempty set of all lower bounds of $\{\square, \square'\}$ in $\mathcal{T}(I)$ would have a join in $\mathcal{T}(I)$, which contradicts 2.3. Conclusion: $\mathcal{T}(I)$ is not an upper semilattice either.
- 2.5. Remark. On the other hand, it follows trivially from 2.1 that any $\square \in \mathcal{T}(I)$ is a join in $\mathcal{T}(I)$ of a countable set of elements isomorphic to \boxtimes . In view of 1.5 it is natural to conjecture that there always exists even a non-decreasing sequence $\{\square_n; n \in \omega\}$ of isomorphs of \boxtimes so that $\square_n \nearrow \square$. This, however, remains an open question.

References

- [1] BIRKHOFF G.: Lattice theory, 3rd ed., AMS Colloquium Publications, Providence, 1967.
- [3] EILENBERG S. and G.M. KELLY: Closed categories, in Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer-Verlag 1966, pp. 421-562.
- [4] MENU J. and J. PAVELKA: A note on tensor products on the unit interval, Comment. Math. Univ. Carolinas 17(1976), 71-83.
- [5] MOSTERT P.S. and A.L. SHIELDS: On the structure of semigroups on a compact manifold with boundary, Annals of Math. 65(1957), 117-143.

University of Antwerpen

2020 - Antwerpen

Middelheimlaan 1

Belgium

Matematicko-fyzikální fakulta

Karlova universita

Malostranské náměstí 2/25

11008 Praha 1 Československo

(Oblatum 3.3. 1977)

