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This note deals with symmetric monoidal closed categories
in the sense of [1]. In what follows, we will call them brief-
ly closed categories. It is well-known (see [31) that a vari-
ety V of universal algebras carries the structure of a clos-
ed category with the free algebra on one generator as the unit
if and only if it is commutative. It means that for each n-ary
operation £ and for each algebra ¥ the map f: A"—> A is a ho-
momorphism, i.e. for any m—ary operation g: A" —» A it holds
gfm = fgn. However, any variety of unary algebras is cartesian
closed and thus there are non-commutative closed varieties.
Recently, Foltz and Lair have deduced in [2] one necessary
condition for closedness and they have shown that the variety
of groups is not closed. We will give another obstruction for

closedness which shows (in the same way as the criterion of
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[21) that the varieties of grupoids with unit and rings are
not closed. The author is indebted to Ch. Lair and A. Pultr

for a valuable conversation.

1. The obstruction theoreg. Let V be a category. In
what follows, we will suppose that E is an object of V such
that every object of ¥V 1is an iterated colimit of copies of
E. It implies that the functor / / = V (E,-): V—> Set is
faithful.

Definition 1: A couple (F,@ ) will be called a connec-
tion on a category V if F: VP — V  is a functor and
¢ = Py y VYV (Vv,Fw) — V (W,FV) a natural isomorphism such
that 9’1,?’ qv" =1 for any V,W e V.

A morphism of connections o : (F,)—>(G,7) is a na-
tural tranurormetionl ® : F—>G such that 7y ye V (Yoo y) =
= VW, oyl ?V,' for any V,2N ¢ V . In this way we get the
category C(V ) of connections on V.

1t (Fyp) 1is a connection on V , then F is adjoint on
the right with itself, where ¢ 1is the adjunction isomorph-
ism. Our terminology is an adaptation for our purposes of-the
terminology of Isbell [4], where a connection from a catego-
ry A to a category B is a contravariant functor F from A to
B having an adjoint on the right G. Under certain suppositi-
ons such connections can be identified with A-objects in B.
Choosing objects a¢ A and be B one gets underlying objects
Fae B and Gbe A, So connections in our sense can be identi-
fied with double V -objects (i.e. with V -objects in V )
such that both underlying objects are isomorphic. Later,
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such an underlying object will be called pseudocommutative.
Denote by ﬁ the category having objects (v,t), where

t: /N/—> /V/ is a mapping such that +tZ = 1 and morphisms

£: (V,8) — (v’,t”) where £: Y —>V’ is a morphism in V¥ and

t°/¢/ = /£/t. Define a functor U: aov) — V by
U(F,q) = (FE, ?E,E) and Uow = < ge

The following proposition is, in fact, a corollary of Theo-
rem 3.8 from [41.

Propogition 1: U is full and faithful.
Proof: U is faithful following the property of E and the
fact that connectlons take colimits to limits. 1f £: U(F,@)—

—» U(G,q’) is a morphism in % , then
-1
Y(X,£)

%, X E,X

Pyt V (E,Fx) ——> ¥ (X,FE) Y%7 v (x,68) — > V(E,GX)
are components of a natural tpransformation 3: /§/ —> /G/«
Following the proof of Theorem 3.8 of [4]1 £ can be extended
by colimits to a pnatural transformation o : F—> G such that
xg=*f and /x/ = 3 o It immediately implies that

Tz, v V (E,xy) Viw,ag)e & EW since V (W,G-) takes
colimits and every object of V is an iterated colimit of

copies of E, have to be a morphism of connections.

Definition 2: An object V of V will be called pseudo-
commutative (with respect to E) if there is a connection
(F,¢@) on VY such that V = FE.

So, a pseudocommutative object V is, under certain suppo=
sitions on V , and underlying object of a double V -object
such that the second underlying object is isomorphic to V vis
jsomorphism t such that tz =1, Clearly, an object isomorphic
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to a pseudocommutative one is pseudocommutative.

FProposition 2: Let V¥V have products. Thera product of
pseudocommutative objects is pseudocommutative.

Proof: Let (Fy, ¢;) be connections on V¥ . Clearly
F=( T, F, T, ¢4) 1s their product, which implies the
assertion.

Let V be a closed category. Denote by V (=,=):
t VP ¥V — v the internal hom-functor, by - @ -:
Vx VY —>V the tensor product, by p = pv’w'x:
t VIre wv,x) — V (v, ¥ (W,X)) the adjunction isomorphism,
by ¢ = ¢y w VO W-—> ¥ V the symmetry and by I € V  the

?
-1

unit. Then ( ¥V (-,X), Py,v,x Vv (c,X).pv’w'x) is a comnection
on V for any X ¢ V.

Theorem 1: Let V be a closed category with products.
Then any object of ¥V 1s isomorphic to a subobject of a pse-
udocommutative obJject.

Proof: Since I is an iterated colimit of copies of E,
V (I,V) is an iterated limit of copies of V (E,V) for any
VeV . Using the construction of limits by products and
equalizers and Proposition 2 we get that V (I,V) is a sub-
object of a pseudocommutative object. But V is isomorphie
te V(I,V).

Remark: 1) The same assertion holds more generally for
symmetric (non-monoidal) closed categories. These are (non—
monoidal) closed categories endowed with a symmetry s =
= 8y w,2° Vv, V(¥2) — V (W, V(,2) satisfying ap~
propriate axioms (see [51).
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2) If V 1is an (epi-extremally mono)-category, then
the word subobject can be replaced in Theorem 1 by an extre-
mal subobject.

Another obstruction for closedness is stated in [2].
Roughly speaking, it asserts that if V 1is closed and any
double V -object underlies a triple one, then any objeet of
Y underlies a double one. This result can be strengthened
in the sense that if any pseudocommutative object underlies

a triple one, then any object underlies a double one.

2. Cloged varjeties of algebras. Let V be a variety
of universal algebras and let E be the free algebra on one
generator. Then / / is the usual forgetful functor.

Proposition 3: An algebra Ve VY is pseudocommutative
if and only if there is a bijection t: /V/—> /V/ such that
t2 =1 and for any n-ary algebraic operation h: IN/B—> 1/
the mepping tht®: /v/®—>/V/ is a homomorphism.

Clearly, tht™ are algebraic operations of a new algebra
on /V/, which is isomorphic to V via t.

Denote by Pa(¥ ) the full subcategory of V consisting of
objects (V,t) such that t makes V to be pseudocommutatives
Then Ps(V ) is a new variety which arises from V by edding
a new unary operation t and the axioms given by Proposition
3. Hence the forgetful functor H: Ps(V) —>» V has a left
adjoint L.

Corollary 1: Let the variety V admit a structure of
a closed category. Then the unit 7 of the adjunction L — H

is a monomorphism.

- 315 -



Proof: Since an object of V 4isomorphic to a objects
from Ps(V ) belongs to Ps(¥ ), by Theorem 1 there is a mono-
morphism '_f_’ HW. Hence 7 y is mono because it factorizes
through f.

Since Ps(V ) is a subvariety of % , L is a suitable
quotient of the left adjoint to the forgetful funector V—*
—> V . This left adjoint assigns to each V€ V  and ob-
ject (W,t) e V  where the underlying set /W/ of W is ‘the
union of a chain X S X;S X, X3S ... . Here X, = /vy X is
the coproduct /V/U/V/, X, is the underlying set of an algeb-
ra in V free over X1but with the algebraic structure of V
on X, X3 = XU (%, - X,) and so on. The algebraic struc-
ture of W is clear and t is given by: t/X; interchanges
the both copies of /V/, t/x3 - X, interchanges the both
copies of xz - X,_L and so on. This procedure is caused by
the fact that ‘v/ is the pullback in CAT of V —> Set
and of the forgetful functor of the category of algebras
with the one unary operation t such that tz =1,

L yields one general construction of pseudocommutative

algebras. Another one 1s given by the following lemma.

Lepmg 1: Let V; and V, be two algebras of Y on the
same underlying set X such that operations of V,L are homomor-
phisms of V, (i.e. (Vq,V,) is a double YV -object). Then t:
XX —XxX, t(xi,xz) = (xz,x.l), makes Vyx V¥, to be pseudo-
commutative.

Proof is straightforward.

Example 1 (see [2]1): Let V¥ be the variety of groups.
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It 4is well-known that double groups are commutative. Thus
V is not closed. The same argument applies to the variety
of semigroups (or grupoids resp.) with the unit.

Example 2: Let VYV Dbe the variety of rings. It is ea-
sy to show that any double ring has the zero multiplication.
Thus V¥ is not closed.

Exsmple 3: Let V be the variety of semigroups. A se-
migroup V is paeudocommutative iff there is a bijection t:
: /V/—> /V/ such that tZ =1 and txptxy)) =
= t(t(x)t(x'))t(t(y)t(y')) for any 1,y,x',y'f.v. Since the
left semigroup on X forms a double gemigroup with any semi-
group on X, by Lemma 1 /VxV/ cerries the following pseudo—
commutative semigroup V¥ for a'mr gemigroup V3 ("'].’“2)("]."'2):
= ("‘1"1'“2)° Evidently V is a subsemigroup of V¥ and thus we
do not need Corollery 4 for the verification that V overco-
mes Theorem 1. One is tempted to try what gives the assign—
ment V (E,V) =V*. This functor V (E,=): V —> VY has a
1eft adjoint - @ E given as follows. Let & be the transi-
tive hull of the relation ~ on /V/ such that u~v iff the=
re are w,Wj,¥,¢ V such that u = wwy, Vv = WWe. Then V® E 1is
the coproduct of V and of a free semigroup on /V//” . Sin-
ce V®@ E = E for no gemigroup V, we do not get a closed stru-
cture on V . The author does not know whether such a struc-

ture can exist.
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