#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1977
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log34

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

ON THE STRUCTURE OF FIXED POINT SETS OF PSEUDO-CONTRACTIVE
MAPPINGS II.

Rainald SCHONEBERG, Aachen

ract: Let (E,Il I) ve a (real) normed linear spa-
ce, X a subset of E and let £ map X into E. The present pa-
per investigates the nature of the set of solutions of the
equation £(x) = x if f 1s nonexpansive or (more generally)
pseudo-contractive.

Key words: Nonexpansive pseudo-contractive metrical-
ly convex, pa hwise connecte&, weakly inward. ’

AMS: 4TH1O Ref. Z.: T.978.53

1 Preliminaries agnd notations. In § 1 we introduce de-
Pinitions of certain concepts to be used in this paper, des-

cribe a method which will be helpful to reduce the fixed

point problem for pseudo-contractive mappings to the nonex-=
pansive case and establish several properties of this reduc-
tion. In § 2 we prove a general result on the structure of
the complement of the fixed point set of a pseudo-contracti-
ve mapping and state some interesting consequences. § 3 is
motivated by the observation that the method of proof used

in [15] yields an improved version of the main result of [15].
We state and prove this generalization and use it to deduce

a number of new results on the structure of fixed point sets
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of nonexpansive and pseudo-contractive mappings in strict-
ly convex and arbitrary Banach-spaces.

All normed limear spaces occurring in this paper are as-
sumed to be real normed l:lneaxj spaces.
Let (E, ) be a normed linear space. For Xc E and £: X—> R
we let X denote the closure of X and Fix(f) is defined to be
the fixed point set of f. If Hc R and Xc H then the symbol
3m!' stands for the boundary of X in the subspace H. In case
H = E we write 9 X instead of 3%,
& subset X of E 1s said to be petrically convex if for each
pair of distinct points X)Xy of X there is a point x of X,
distinct from x; and X5, such that

Nxy = xzIl =lixy = xll +lix; - xll.

Every closed and metrically convex subset of a Banach-space
is pathwise connected (see [11). The properties "convex" and
"metrically convex" coincide for closed subsets of strictly
convex normed linear spaces.

A subset X of E is said to be gtarshaped if there is x,€ X
such that (1 - t)x, + txeX whenever t € {0,1] and xeX.

It is well-known and easily verified that the path cecomponents
of the complement of a starshaped set are unbounded.
According to [9]1 we say that a set XCE has pormgl structure
if for every convex and bounded subset K of X which contains
more than one point there is a point x in K for which

sup(4ll x -yl | ye K3 )<sup(dillu-vil|u vek?).

If X is compact or (E, |l Il ) is uniformly convex then X has

normal structure.
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If Xc E and £: X —>E then £ is said to be M it

1m bl a((1 - h)x + ne(x),X) =0
S0t

for each x¢€ X, where alz,X):= inf({lz - ¥ h| ye X} )s Note
that £ is weakly inward if £[(dX1c X and X is conveX. £ is
said to be popexpanalve if for all x,ye ¥

12(x) - e(PU&lx -y,

while £ is said to be_mm-_gmgmm 1f for all x,ye€X
and r20
lx-ylel+ r)(x = y) - r(£lx) - £ly))l.

The pseudo—contractive mappings are easily seen to be
more general than the nonexpansive mappings. They derive their
importance in nonlinear functional analysis via their connec=
tion with the accretive transformations: A mapping £f: X— E
is pseudo-contractive if and only if the mapping Id - £ 18
accretive, i.e., for every x,y€X there is jeJd(x = y) such
that

(2(x) - £(y), D & x -y 1?,

L3
where J: E—> 2B* denotes the normalized dualliy mapplug
which is defined by

J(x): = L jeB*) (x,3) = Bxl 2 ana U3l= UxU3
(see 1L81).
Our main tool in studying the fixed point problem for

pseudo-contraet ive mappings is

Proposition 1. Let (E, I W) be a Banach-space, ¥c B
and let £: X—>E Mmgm_ax@_mmmﬂﬁﬂﬂm- Let
furthermore Ap: X—> E be dofined by Ap:= 2Id - f. Ihen:
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(1) Ap 1o one-to-one apd Ap'is nonexpansive.
(2) Fix(£) = Fix(agh)
(3) If £ is weakly inward and X i3 closed and convex then
XCAI [x].
(4) If X 13 cloged then Apl X1 is cloged.
(5) If X is open then Ap( X) is open.
Proof: (1),(4): For x,y€X we have by definition

] Af(x) - Af(y) Izllx -yl
which establishes (1) and (4). (2): Obvious. (3): Let z be in
X and define g: X—> E by g(x):= %(f(x) + z). Then g is weak-
ly inward and continuous. Let x,ye X. By the previous remark
there is je J(x - y) such that (£(x) - £(y),5)< i x - yh 2,
This implies (g(x) - g(y),J) < -% hx -y I2 . Hence by [4, Co-
rollary 2] there is xe X with g(x) = x, i.e., z = Ap(x). (5):
Let x,ye X and choose je J(x - y) with (£(x) - £(y),j) < I x -
- 31 2. Then
(Ap(x) = Ap(3),3) = 2(x = 3,3) = (£(x) - £2(3),P20x - yll 2
Therefore by [4, Theorem 3 ) Af[ X1 is an open subset of E.

Q.E.D.

2 Complements of fixed point sets. The main result of

this section is

Iheorem 1. Let (E, Il 1) be a normed lipear space, XcE
and let £: X—> E be pseudo-contractive. Then every xe X \
\ Fix(f) lies in an unbounded path component of E\ Fix(g).

Proof. Let xe& X\ Fix(f) and define HCE by

Hi={x + r(x - £(x)) | r20%.
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Then H is a pathwise connected unbounded subset of E with
x € Ho Therefore it suffices to show that Hn Fix(g) = B. Ot-
herwise there is r>0 such that y:= X + rix - £(x))e Fix(£).
Since f is paeudo-contractive this yields

ix-yl£elQ + ) (x -y -rlex) =yl =0.
Hence x = ¥y, 1.e., x€ Fix(£), a contradiction. Q.E.D.

It is well-known that in f£inite-dimensional normed li-
near spaces the boundary of a nonempty open and bounded set
is not a continuous retract of the closure of this set (see
{61). This isn’t true for infinite-dimensional normed linear
spaces. Indeed, a normed linear space is infinite-dimensional
if and only if there is a continuous retraction of the unit
ball onto the unit sphere (see [ 51). However, such a retrac—
tion cannot be pseudo-contractive. This is a consequence of
the following result, which improves a corresponding one due
to Floret [ 71.

Corollary l.1. I1f (E,0 1) is a pormed lipear spage and
X t nd 4 E then there is no
do-contractive r X onto 9X.
Proof. If R: X—>E is pseudo-contractive such that
3 Xc Fix(R) then R = Id by Theorem 1, Hence R cannot be &

retraction onto 3 X. Q.E.De

Another useful consequence of Theorem 1 is

Corollary 1.2. Let (E, I |) be g normed linear space
and X g subset of E auch that the path components of ENX
are unbounded. Let furthermore f: X—> E be pseudo-contract=
ive. Then every path component of ENFix(f) is unbounded.
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Proof. Let U be a path component of EN\ Fix(f) and sup-
pose, contrary to our assertion, that U is bounded. Then by
Theorem 1 UnX = @, i.e., U is a bounded path component of
EN\X, a contradiction. Q.E.D,

Corollary 1.3. Let (E,N N) be a pormed linear space,
X a_starshaped subset of E apd let £: X —>E be pseudo-comt-
ractive. Then every path component of EN Fix(f) is unbounded.

Remark 1. In the case of a convex X and a compact and
nonexpansive selfmapping of X, Corollery 1.3 was proved by
Stoyan in L[161.

3 Fixed point sets. The results of this section are
based on the following improved version of Theorem 1 in [151.
Although the method of proof is the same as in [15]1 we give

the proof for the sake of completeness.

Theorem 2. Lat (E, N A) be a normed lipear space, HcE
be closed and convex, Xc H ba closed and let f: X—>H be pon=
expansive. Then Fix(f) is closed and metrically copvex if the
following conditions are satisfled:

(1) I£ K ia g nopempty, bounded, _closed and convex subset
of X puch that K lies in some aphere and £ (Klc K. thep £
has a fixed point ip K.

(2} card(fFix(f) A 8 X)41

Progf. Since X is closed and £ is continuous the f£ixed
point set of £ is closed. Let now x;,x,€ Fix(f) with x;% X5e
Because of (2) we may assume the existence of r>0 sueh that
JeHand lly - x; 1 &£ r imply ye X. Choose t ¢ (0,1) with
tlxy -lel.—r and define KcE by
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Ki={yeH|1Ix -yletlx; - x| and Ix, -yl &
e(1-t)0x - x13

Then K is a nonempty L(1 = t)x; *+ tx;e Kl, bounde&.,.olo:ed

and convex subset of X such that K lies in the sphere of ra=

ddus tlhx - le about x;. Using the nonexpansiveness of f*

it is easily verified that £LK1cC K. Hence by (1) there is

x¢ K with £(x) = x. Now

llxl-x|+|x2-xllétlxl-leo(l -'t)ﬂxl-le

=llx -x \
and therefore

le—x||-> sz -xl= lxl-le.
Since x¥ Xp and x+xz we are done. Q.E.D.

It is well-known that a nonempty convex subset of &
strictly convex normed linear space which lies in some sphere
consists exactly of one point. Hence (1) of Theorem 2 18 al-
ways satisfied if (E,1 1) is assumed to be strictly convexe

This yields the following extension of the classical result '
of Schaefer [141:

Gorollary 2.1. Lat (E,1 1) be a strictly convex mormed
linear space, HCE be closed apd comvex, XcH be cloged and
let f£: x—> H be nopexpanaive such that card(Fix(£) n 3 X) &

The most famous fixed point theorem for nonlinear non—
expansive mappings in the noncompact setting is that obtaim
ed independently by Browder, Gohde and Kirk who. proved that
a nonexpansive gselfmapping of a nonempty weakly compact and

convex subset of a Banach-space has a fixed point whenever
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this set has normal structure (see [9]1). This yields, obser-

ving Theorem 2

Corollary 2.2. Let (E,l ) be a Banach-space, HCE ba
closed and convex and Xc H be cloged such that every cloged,

d and convex subget X 1 mpa nd ha =
mal structupre. If f: X—>H i nonexpansive such that
card(Fix(£) n GHx)él ihen Fix(£) ias closed apnd pathwise
gonnected,

In the remaining part of this section we treat the "stru-
cture-problem" for fixed point sets of pseudo-contractive map-

pings.

Corollary 2.3. Let (E, Il ¥) be a gtrictly convex Ba-
nach-space, Xc E be cloged and convex and let £: X—>E be
continuous, pseudo-contractive and weakly inwerd. Then Fix(f)

1 d d nvex.

Proof. Define Ap: X—>E by Ap(x):= 2x - £(x). Because
of Proposition 1, (1) and (3) we may define g: X—> X by
glx):= A;l(x). Then Fix(f) = Fix(g) and g is nonexpansive by
Proposition 1, (1) and (2). Now Corollary 2.1 implies that
Fix(g) is closed and convex, which yields the assertion.

Q.E.D,

r ry 2.4. Let (E, I I) be s Banach-space and let
X be a nonempty, weakly compact and convex subset of E which

has normal structure. Let furthermore f£: X —>E be continu-
ous, do-gon d i d. Then Fix(f) jis

M.A_MMMMX*)M, in particu-

%) i.e. there is g nonexpansive mapping r: X—> Fix(f) with
r(x) = x if xe Fix(£). It should be noted that & nonexpan-
sive retract of a conver set is metrically convex(seel31).
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1ar, pathwige conpected.
Proof. Let Ap and g be defined as in the proof of Coro-

1lary 2.3. Then Fix(g) is nonempty by the Browder/Gohde/Kirk
theorem and a nonexpansive retract of X by [3, Theorem 21.

Using Fix(f) = Fix(g) we are done. Q.E.D.

Remark 2. The existence part of Corollary 2.4 was proved
for Hilbert spaces in {121 and for arbitrary Banach-spaces
in [111.

Let (E, Il Il) be a normed linear space, XCE and f£: X—>
—> E. Recall (see [101) that f is said to be generalized con=
densing if whenever Yc X, f {Ylc ¥ end Y\ @o(£[Y]) is relati-
vely compact, then Y is relatively compact, where coleL YD)

is the convex closure of £ [Y] .

Corollary 2.3. Let (E, W Il) be a Bapach-space, XcE be
nonempty, closed, bounded and convex and let f: X—> X he con-
iiguous, wﬁ_;ug_ﬂwllu——ﬂﬂm Ihen
Fix(f£) is nonempty, compact and pathwise connected.

Proof. The Lifschitz-Sadovski fixed point theorem [10]
implies that Fix(f) is nonempty and compact. Furthermore it
48 well-known (see £131) that there is a compact and convex
subset Y of X with Fix(£)c ¥ end £ [Y) c Y. Hence Corollary
2.4 applied to (£ \ Y,Y) shows that Fix(f£) is pathwise connec—
ted, Q.E.D.

Gorollary. 2.6. Let (B, 1) be a Banach-space sueh
that every nopempty, closed, pounded and convex subset of
B 0 t d t 0
with respect to nonexpansive selfmappings. Let furthermo=

morg XcE be open and f£: ¥— B pe contipuous and pseudo=
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contractive such that card(Fix(f£)n 0 X)4 1. Thep Fix(f) ia
cloeed, metrically convex and, in particular, pathwise cop-
nected.

Proof. Define Ap: X—» E by Aglx):= 2x - £(x), Yc B by
T:= A,[¥] and g: Y—> E by g(x):= L;]'(x). Proposition 1
implies that Y is closed, g is nonexpansive, a!'cAf [ax)]
and that Fix(g) = Fix(f). Hence card(Fix(g)n 9Y¥)<'1, which
implies = by Theorem 2 - that Fix(g) = Fix(f) is metrically

convex, Q.E.D.

Corollary 2.7. Let (E, N 0) be a strictly convex Bansch-
space, Xc E gpen apd let £: X—»> E be continuous and paeudo-
contractive such that card(Fix(£)n dX)£ 1. Thep Fix(f) ig
glosed and convex.

Remark 3. The results of this section seem to he new.
For the detajiled discussion of relevant contributions of ot-
her guthors and some applications of results similar to tho~—

se of this section we refer to [15].

The present paper extends several results of an earlier
one of the author, which appeared under the same title in
Comment. Math. Univ. Carolinae 17,4(1976), 771-777. It should
be noted, however, that the proofs in that paper don’t use
such deep results from the theory of differential equations
in Banach spaces as [4, Corollary 2] and [4, Theorem 3] .
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