

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log33

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

FIXED POINT THEOREMS FOR PSEUDOCONTRACTIVE MAPPINGS AND A COUNTEREXAMPLE FOR COMPACT MAPS

G. MÜLLER and J. REINERMANN, Aschen

Abstract: We give examples for open bounded starshaped sets in all normable spaces of dimension at least 3 whose closures have not the fixed point property for compact self-mappings. Using a special convergence theorem we extend fixed point theorems for pseudocontractive mappings (including non-expansive mappings) which are known for Hilbert spaces.

Key words: Fixed points, starshaped sets, compact mappings, pseudocontractive and nonexpansive mappings, duality mappings.

AMS: Primary 47H10 Secondary 55C20, 47H05 Ref. Z.: 7.978.53

o. Introduction. It is well-known that the Brouwer fixed point theorem need not be true for compact starshaped subsets of a finite-dimensional space (see [12],[13],[14],[15]). However, the counterexamples given with respect to this problem are essentially boundary sets in the underlying space. In this paper we shall give even an example of a compact starshaped subset of three-dimensional space R³ which is the closure of an open starshaped set but has not the fixed point property for continuous maps. Moreover we shall present a theorem on (strong) convergence for Banach spaces having a weakly continuous duality mapping. Then we have both a generalization of a corresponding result for Hilbert spaces which is due to

M.G. Crandall and A. Pazy [3] and a couple of applications to the fixed point theory of pseudocontractive and nonexpansive mappings in Banach spaces possessing a weakly continuous duality mapping (for Hilbert spaces some of the results are known, see [12],[13],[14],[15],[16],[18]).

For a normed linear space $(E, \|\cdot\|)$ E* denotes the strong dual space of $(E, \|\cdot\|)$ and for a subset X of E let \overline{X} , $\operatorname{int}(X)$, ∂X denote the closure of X, the interior of X and the boundary of X respectively. XCE is said to be starshaped iff there exists $x_0 \in X$ such that $tx + (1 - t)x_0 \in X$ for $x \in X$ and $t \in [0,1]$. For $f: X \longrightarrow E$ we define $\operatorname{Fix}(f) := \{x \mid x \in X \land f(x) = x\}$.

1. A counterexample In this section we give an example for an open bounded and starshaped subset of \mathbb{R}^3 whose closure has not the fixed point property for continuous self-mappings. Moreover we discuss some consequences of this result to \mathbb{R}^n $(n \ge 3)$ and other spaces.

For the definition of the set in \mathbb{R}^3 described below we use a construction and a hint of J.M. Lysko [10].

Theorem 1.1 There exist $X \subset \mathbb{R}^3$ and $f \in C(\overline{X}, \overline{X})$ such that

(i) X is open bounded and starshaped,

(ii) $Fix(t) = \emptyset$.

 $\begin{aligned} X &:= \frac{1}{4} (\mathbf{r} \cos \varphi, \mathbf{r} \sin \varphi, \mathbf{z}) \, \Big| \, \mathbf{r} \in [0,1), \quad \varphi \in \mathbb{R}^+, \, \mathbf{z} \in (-1,1) \} \, \cup \\ &\left\{ (|\mathbf{z}| \mathbf{r} \cos \varphi, \, |\mathbf{z}| \mathbf{r} \sin \varphi, \mathbf{z}) \, \Big| \, \mathbf{r} \in (\frac{1}{2},1), \, 1 \leq |\mathbf{z}| < 2, \, \mathbf{p}(\mathbf{r}) < 2, \, \mathbf{r} \in [0,1) \right\} \, \\ &< \varphi < \mathbf{p}(\mathbf{r}) + 1 \} \end{aligned}$

and

```
Y:= {(r \cos \varphi, r \sin \varphi, z) | r \in [0,1], \varphi \in \mathbb{R}^+, z \in [-1,1]}
      \{(|z|\cos\varphi,|z|\sin\varphi,z)|1\leq|z|\leq 2, \varphi\in\mathbb{R}^+\}\cup
      \{(|z| r \cos \varphi, |z| r \sin \varphi, z) | r \in [\frac{1}{2}, 1), 1 \le |z| \le 2,
                             p(r) \leq cq \leq p(r) + 1.
```

By a straightforward but somewhat lengthy computation we obtain: X is a bounded open and starshaped (with respect to the origin) subset of \mathbb{R}^3 such that $\overline{x} = x$. Now let H: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined as follows:

If $(x,y,z) \in \mathbb{R}^3$ and $|z| \le 1$ then H(x,y,z) := (x,y,z); if $(x,y,z) \in \mathbb{R}^3$ and |z| > 1 then $H(x,y,z) := (\frac{x}{|x|}, \frac{4}{|x|}, z)$.

H clearly is a homeomorphism. Let K:= H[Y]. Thus $K = \{(r \cos \varphi, r \sin \varphi, z) | r \in [0,1], \varphi \in \mathbb{R}^+, |z| \leq 1\} \cup$ {(cos q, sinq,z) | q & R+, 1 4 | z | 4 2 } U $\{(\mathbf{r} \cos \varphi, \mathbf{r} \sin \varphi, \mathbf{z}) \mid \mathbf{r} \in [\frac{1}{2}, 1), 1 \leq |\mathbf{z}| \leq 2, p(\mathbf{r}) \leq 1\}$ ≤ \(\varphi\) \(

Clearly it is enough to prove the existence of a $g \in C(K,K)$ such that Fix(g) = Ø.

Let R: $K \rightarrow \mathbb{R}^3$ be defined as follows:

If $(x,y,z) \in K$ and $z \in 1$ then R(x,y,z) := (x,y,1);

if $(x,y,z) \in K$ and $x^2 + y^2 = 1$ and $z \ge 1$ then R(x,y,z) := (x,y,z);

if $(x,y,z) \in K$ and $x = r \cos \varphi$, $y = r \sin \varphi$ and $r \in [\frac{1}{2}, 1), z \ge 1$

if
$$(x,y,z) \in K$$
 and $x = r \cos \varphi$, $y = r \sin \varphi$ and $r \in L_{\frac{\gamma}{2}}, 1/, 2$
and $p(r) \notin \varphi \neq p(r) + 1$ then
$$(p^{-1}(\varphi) \cos \varphi, p^{-1}(\varphi) \sin \varphi, z + r - p^{-1}(\varphi))$$
if $z + r - p^{-1}(\varphi) \ge 1$

$$((z - 1 + r) \cos \varphi, (z - 1 + r) \sin \varphi, 1)$$
if $z + r - p^{-1}(\varphi) < 1$.

For $z \in [1,2]$ and $r \in [\frac{4}{2},1)$ such that $p(r) \neq \varphi \neq p(r) + 1$

we have $z + r - p^{-1}(\varphi) \neq z \leq 2$ and conversely $z + r - p^{-1}(\varphi) \neq 2$ implies

 $\frac{1}{2}$ 4 r \(\per z - 1 + r \(\per p^{-1}(\varphi) < 1\) thus

 $\begin{aligned} R[K] \subset K' := & \{ (r \cos \varphi, r \sin \varphi, 1) \mid r \in [0, 1], \ \varphi \in \mathbb{R}^+ \} \cup \\ & \{ (\cos \varphi, \sin \varphi, z) \mid z \in [1, 2], \ \varphi \in \mathbb{R}^+ \} \cup \\ & \{ (p^{-1}(\varphi) \cos \varphi, p^{-1}(\varphi) \sin \varphi, z) \mid z \in [1, 2], \\ & \varphi \in \mathbb{R}^+ \} \subset K. \end{aligned}$

Moreover we have $R|K' = \mathrm{Id}_{K'}$, thus R[K'] = K'.

Obviously R is continuous (it clearly suffices to verify this for points $(\cos \varphi_0, \sin \varphi_0, z_0)$ with $\varphi_0 \in \mathbb{R}^+$ and $z_0 \in [1,2]$). We have: R is a retraction from K onto $K' \subset K$. Therefore it is enough to search for a map $h \in C(K,K')$ such that

Fix(h) = \emptyset (then $g := h \circ R \in C(K,K)$ and $Fix(g) = \emptyset$). Let $h : K \to \mathbb{R}^3$ be defined as illustrated in the schedule on page 296.

Remark 1.2. (i) Let $n \in \mathbb{N}$, let $X \subset \mathbb{R}^n$ be open bounded and starshaped with respect to be X. Suppose $f \in C(\overline{X}, \overline{X})$ such that $Fix(f) = \emptyset$. Let $j \colon \mathbb{R}^n \longrightarrow \mathbb{R}^{n+1}$ be the natural embedding. Then the "open cone over X"

 $Y:=\left\{(z_1,\ldots,z_{n+1})\in\mathbb{R}^{n+1}\mid z_{n+1}\in(0,1)\wedge\frac{4}{4-z_{n+4}}(z_1,\ldots,z_n)\in\mathbb{X}\right\}$ is an open bounded and starshaped subset of \mathbb{R}^{n+1} and $g\in\mathbb{C}(\overline{Y},\overline{Y})$ defined by $g((1-t)(0,\ldots,0,1)+tj(x):=j(f((1-t)b+tx))$ for $t\in[0,1],\ x\in\overline{X}$ has no fixed points (compare [8]). Thus we obtain by Theorem 1.1:

 $\forall x \in \mathbb{R}^m \quad \exists \exists \overline{x} \in \mathbb{C}(\overline{x}, \overline{x})$ open bounded starshaped $\wedge \operatorname{Fix}(f) = \emptyset$.

(ii) Let (E,\mathcal{F}) be a separated locally convex topological linear space of dimension at least 3. Then there exist an

open starshaped set K and a compact map $g \in C(\overline{K}, \overline{K})$ such that $Fix(g) = \emptyset$. Indeed, let F be a 3-dimensional linear subspace of E. As there are linear homeomorphisms between \mathbb{R}^3 and F, there is an open bounded starshaped set (with respect to the origin) X in F and $f \in C(\overline{X}, \overline{X})$ with $Fix(f) = \emptyset$. Let P be any continuous linear projection of E onto F (F is a complementary set). Set $K:=\mathbb{P}^{-1}$ [X]and $g:=f \circ \mathbb{P}[\widehat{K}]$. Then it is clear that K is open and starshaped and g is a compact map such that $Fix(g) = \emptyset$. If, in addition, (E, \mathbb{Z}) is normable, K may be taken bounded.

2. Fixed point theorems for pseudocontractive mappings.

A convergence theorem due to M.G. Crandall and A. Pazy [3] implies several fixed point theorems for continuous pseudo-contractive and especially for nonexpansive mappings in Hilbert space (see [12],[13],[14],[15],[16],[18]). In the present note we establish a variant of that theorem which guarantees that most of these results are valid for a more general class of spaces.

perinition 2.1 (i) $\mu: \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a gauge function: $\iff \mu$ is continuous and strictly monotone, $\mu(0) = 0$, $\lim_{t \to \infty} \mu(t) = \infty$.

- (ii) Let $(E, \|\cdot\|)$ be a real normed space, $\mu: \mathbb{R}^+ \to \mathbb{R}^+$ be a gauge function and $J: E \to E^*$. J is called a duality mapping with respect to $\mu: \bigoplus_{x \in E} J(x)(x) = \|x\| \cdot \mu(\|x\|) \wedge \|J(x)\| = \mu(\|x\|)$.
- (iii) ((E, $\|\cdot\|$), μ , J) satisfies (*): \iff (E, $\|\cdot\|$) is a reflexive real normed space, $\mu: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a gauge

function and J: $E \longrightarrow E^*$ is a weakly sequentially continuous duality mapping with respect to $u^{(1)}$.

Remark 2.2 (i) Let $(E, \|\cdot\|)$ be a real normed space, let $\mu: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ be a gauge function. Then the Hahn-Banach theorem implies the existence of a duality mapping J: $E \longrightarrow E^*$ with respect to μ .

(ii) Let $(E, (\cdot, \cdot))$ be a real Hilbert space. Define J: $E \longrightarrow E^*$ by J(x)(y):=(y,x) and $\|\cdot\|: E \longrightarrow R$ by $\|x\|:=(x,x)^{1/2}$. Then $((E, \|\cdot\|), Id_{R^+}, J)$ satisfies (*).

(iii) Let p, $q \in (1, \infty)$, $\frac{1}{p} + \frac{1}{q} = 1$. Then we identify ℓ_p^* , ℓ_q in the usual manner. Define J: $\ell_p \longrightarrow \ell_q$ by $J((x_j)_{j \in \mathbb{N}}) := (|x_j|^{p-1} \text{ sign } x_j)_{j \in \mathbb{N}}$ and $\mu: \mathbb{R}^+ \longrightarrow \mathbb{R}$ by $\mu(t) := t^{p-1}$. Then $((\ell_p, \|\cdot\|), \mu, J)$ satisfies (*). (See [2]).

<u>Definition 2.3</u> Let $(E, \|\cdot\|)$ be a normed space, $\emptyset + X \subset E$, $f: X \longrightarrow E$.

- (i) f is said to be nonexpansive : \longleftrightarrow \forall \forall f(x) f(y) $\| \le \| x y \|$

Remark 2.4 Let $(E, \cdot \cdot)$ be a real normed space, $\emptyset + X \subset E$, $f: X \longrightarrow E$.

- (i) If f is nonexpansive then f is pseudocontractive.
- (ii) If there is a uniquely determined duality mapping

This implies that E* is strictly-convex (see [61) and consequently J is unique.

J: $E \longrightarrow E^*$ with respect to some gauge function then we have: f pseudocontractive $\iff \bigvee_{x,y \in X} J(x-y)(f(x)-f(y)) \leq d(x-y)(x-y)$ (see [7]).

The announced convergence theorem is

Lemma 2.5 ([12]) Let (E, $\|\cdot\|$) be a real normed space admitting a weakly sequentially continuous duality mapping J: $E \to E^*$ with respect to some gauge function μ , let $(x_n) \in E^{Z^+}$, $(r_n) \in (0, \infty)^{\mathbb{N}}$ such that (i) $\lim(x_n) = x_0$ (weakly), (ii) $\lim(r_n) = 0$,

(iii) $\bigvee_{m,m\in\mathbb{N}} J(x_n - x_m) (r_n x_n - r_m x_m) \neq 0$

Then $\lim(x_n) = x_0$ (strongly).

 $\begin{array}{lll} & \underline{Proof}\colon \ \ \text{We have for } n\in \ \mathbb{N} & \lim_{m} (J(x_n-x_m)) = \\ & = J(x_n-x_0) \ (\text{weakly}), \ \lim_{m} (-r_n x_n + r_m x_m) = -r_n x_n \ (\text{strongly}). \\ & \text{This together with (iii) implies: } J(x_n-x_0)(-r_n x_n) = \\ & = \lim_{m} (J(x_n-x_m)(-r_n x_n + r_m x_m)) \geq 0, \ \text{hence } J(x_n-x_0)(-x_0) = \\ & = J(x_n-x_0)(x_n-x_0) + J(x_n-x_0)(-x_n) \geq J(x_n-x_0)(x_n-x_0) = \\ & = \|x_n-x_0\| \cdot (\mu(\|x_n-x_0\|)). \ \text{Because of } \\ & \lim_{m} (J(x_m-x_0)(-x_0)) = 0 \ \text{we get } \lim_{m} \|x_n-x_0\|) = 0. \\ & \text{As an evident consequence of Lemma 2.5 we get} \end{array}$

Lemma 2.6 Let $((E, \|\cdot\|), \mu, J)$ satisfy $(*), (x_n) \in E^{\mathbb{N}}$, $(r_n) \in (0, \infty)^{\mathbb{N}}$ such that (x_n) is bounded, $\lim_{n \to \infty} J(x_n - x_m) (r_n x_n - r_m x_m) \neq 0$.

Then there is a subsequence (y_n) of (x_n) and $y \in E$ such that $\lim (y_n) = y$ (strongly).

Lemma 2.6 implies the following fixed point theorem for continuous pseudocontractive mappings:

Lemma 2.7 (See [16]) Let ((E, $\|\cdot\|$), μ , J) satisfy (*), let $\emptyset + X \subset E$ be closed and f: $X \longrightarrow E$ be continuous and pseudocontractive, let $(x_n) \in X^N$, $(\lambda_n) \in (0,1)^N$ such that

(i) (x_n) is bounded, (ii) $\lim_{n \to \infty} (\lambda_n) = 1$,

(iii)
$$\bigvee_{n \in \mathbb{N}} x_n = \lambda_n f(x_n)$$

Then f has a fixed point.

<u>Proof</u>: We define $(\mathbf{r}_n) \in (0, \infty)^{\mathbb{N}}$ by $\mathbf{r}_n := \frac{1}{\lambda_m} - 1$. As f is pseudocontractive we get for n, m $\in \mathbb{N}$:

 $-J(\mathbf{x}_n - \mathbf{x}_m)(\mathbf{r}_n \mathbf{x}_n - \mathbf{r}_m \mathbf{x}_m) = J(\mathbf{x}_n - \mathbf{x}_m)(\mathbf{x}_n - \mathbf{x}_m - \mathbf{f}(\mathbf{x}_n) + \mathbf{f}(\mathbf{x}_m)) \ge 0 \text{ (see Remark 2.4 (ii)). Lemma 2.6 guarantees } \mathbf{y} \in \mathbf{E}$ and a subsequence (\mathbf{y}_n) of (\mathbf{x}_n) such that $\lim(\mathbf{y}_n) = \mathbf{y}$ (strongly).

Then $y \in X$ and because of $\lim(y_n - f(y_n)) = 0$ and continuity of f we get: f(y) = y.

The following theorems are applications of Lemma 2.7. For Hilbert spaces and lipschitzian pseudocontractive mappings the theorems 2.8 and 2.9 are proved in [16] and for merely continuous pseudocontractive mappings they are proved in [18].

Theorem 2.8 Let $((E, \|\cdot\|), (a, J) \text{ satisfy } (*), \text{ let } X \subset E$ be a closed neighborhood of the origin and $f: X \longrightarrow E$ be continuous and pseudocontractive such that f[X] is bounded and (LS) $X \in \partial X$ $X \in B \setminus E$ $X \in B \setminus E \setminus E$ $X \in B \setminus E$ $X \in B$ $X \in$

Then f has a fixed point.

<u>Proof</u>: Choose $(\lambda_n) \in (0,1)^{\mathbb{N}}$ with $\lim_{x \to 0} (\lambda_n) = 1$. For $n \in \mathbb{N}$ $\lambda_n f$ is continuous and strictly pseudocontractive with $\lim_{x \to 0} (\lambda_n f)(x) = \lambda_x \Longrightarrow \lambda \le 1$.

By a theorem of R. Schöneberg [18] there is $(x_n) \in X^{N}$ such

that $x_n = \lambda_n f(x_n)$ for $n \in \mathbb{N}$. According to Lemma 2.7 we are done.

Theorem 2.9 Let $((E, \|\cdot\|), (u, J))$ satisfy (*), let $X \subset E$ be a closed and symmetric neighborhood of the origin and f: $: X \longrightarrow E$ be continuous and pseudocontractive such that f[X] is bounded and $\bigvee_{X \in \partial X} f(-x) = -f(x)$.

Then f has a fixed point.

<u>Proof</u>: For $x \in \partial X$ we have J(2x)(2f(x)) = J(x - (-x)). $(f(x) - f(-x)) \neq J(x - (-x))(x - (-x)) = J(2x)(2x)$. Thus f satisfies condition (LS) of Theorem 2.8.

Lemma 2.10 Let E be a topological linear space and $X \subset E$ be starshaped with respect to the origin. Assume $f: \overline{X} \longrightarrow E$ such that

(R)
$$\forall \exists \forall (0, \lambda) (1 + t)x - tf(x) \notin \widetilde{X}.$$

Then $\forall x \in \partial X \quad \lambda \in \mathbb{R}$ $f(x) = \lambda x \Longrightarrow \lambda \leq 1$.

<u>Proof:</u> Let $x \in \partial X$, $\lambda \in \mathbb{R}$ and $f(x) = \lambda x$. Suppose $\lambda > 1$. Choose $\widetilde{\lambda} > 0$ such that $(1 + t)x - tf(x) \notin \overline{X}$ for $t \in (0, \widetilde{\lambda}]$ and choose $t \in (0, \widetilde{\lambda}]$ such that $(\lambda - 1)t \in (0, 1]$. Then we have $(1 + t)x - tf(x) = (1 - (\lambda - 1) t)x \in \overline{X}$ since \overline{X} is starshaped with respect to the origin, too. This contradicts (R), thus $\lambda \in 1$.

Observing Lemma 2.10 and Theorem 2.8 we obtain

Theorem 2.11 Let $((E, \|\cdot\|), (u, J))$ satisfy (*). Suppose XCE is closed and starshaped with respect to $0 \in \text{int}(X)$ and f: X \longrightarrow E is continuous and pseudocontractive such that f[X] is bounded and

(R)
$$\forall x \in \partial X$$
 $\lambda = 0$ $t \in (0,\lambda)$ $(1 + t)x - tf(x) \notin \overline{X}$.

Then f has a fixed point.

Remark 2.12 Lemma 2.10 shows that H. Rothe's fixed point theorem for compact maps in [17] is only a special case of the general Leray-Schauder fixed point theorem for compact maps.

Theorem 2.13 Let $(E, \|\cdot\|)$, (μ, J) satisfy (*). Suppose XCE is a closed bounded and symmetric neighborhood of the origin, $f: X \longrightarrow E$ is continuous and pseudocontractive such that f[X] is bounded and

(A)
$$\exists_{x \in \partial X} \| f(x) + f(-x) \|^2 - \| 2x - f(x) + f(-x) \|^2 \le 4(1 - \epsilon) \| x - f(x) \| \cdot \| x + f(-x) \|$$

and

(B)
$$\inf \{ \|x - f(x)\| \mid x \in \partial X \} > 0$$

Then f has a fixed point.

Proof: Let $\varepsilon > 0$ be chosen according to (A). Let M > 0 such that $\| f(x) \| < M$, $\| x \| < M$ for $x \in X$, $r := \inf \{ \| x - f(x) \| \} \|$ $\| x \in \partial X \}$, let $(\lambda_n) \in (0,1)^M$ such that $\lim_{n \to \infty} (\lambda_n) = 1$ and $(1 - \lambda_n) \cdot 9M^2 < \varepsilon \cdot r^2$ for $n \in \mathbb{N}$. Then we have for $x \in \partial X$, $m \in \mathbb{N}$:

$$\begin{split} &\frac{4}{4} \parallel \lambda_{n} f(x) + \lambda_{n} f(-x) \parallel^{2} - \frac{4}{4} \parallel 2x - \lambda_{n} f(x) + \lambda_{n} f(-x) \parallel^{2} \\ & \leq \frac{4}{4} \parallel f(x) + f(-x) \parallel^{2} - \frac{4}{4} \parallel 2x - f(x) + f(-x) \parallel^{2} + \\ & + (1 - \lambda_{n}) 4M^{2} \leq (1 - \epsilon) \parallel x - f(x) \parallel \cdot \parallel x + f(-x) \parallel + \\ & + (1 - \lambda_{n}) \cdot 4M^{2} \leq \parallel x - f(x) \parallel \cdot \parallel x + f(-x) \parallel - \epsilon \cdot r^{2} + \\ & + (1 - \lambda_{n}) \cdot 4M^{2} \leq (\parallel x - \lambda_{n} f(x) \parallel + (1 - \lambda_{n}) M) \cdot \end{split}$$

$$\begin{split} \cdot (\parallel \mathbf{x} + \lambda_{\mathbf{n}} f(-\mathbf{x}) \parallel + (1 - \lambda_{\mathbf{n}}) \mathbf{M}) &- \epsilon \cdot \mathbf{r}^2 + (1 - \lambda_{\mathbf{n}}) \cdot 4 \mathbf{M}^2 \\ < \parallel \mathbf{x} - \lambda_{\mathbf{n}} f(\mathbf{x}) \parallel \cdot \parallel \mathbf{x} + \lambda_{\mathbf{n}} f(-\mathbf{x}) \parallel \text{, hence} \\ \mathbf{x} - \lambda_{\mathbf{n}} f(\mathbf{x}) &+ (\mu(-\mathbf{x} - \lambda_{\mathbf{n}} f(-\mathbf{x})) \text{ for } \mathbf{n} \in \mathbb{N} \text{ , } \mathbf{x} \in \partial \mathbf{X}, \\ \mu \in (0,1]. \end{split}$$

By a theorem of R. Schöneberg [18] we obtain a sequence (x_n) such that $x_n = \lambda_n f(x_n)$. Hence f has a fixed point by Lemma 2.7.

Remark 2.14 (i) In the case of a Hilbert space $(E,(\cdot,\cdot)) \text{ the condition (A) of Theorem 2.13 is equivalent to}$ $\exists_{\epsilon>0} \quad \forall_{x\in\partial X} \left(\frac{x-f(x)}{\|x-f(x)\|} \right), \frac{-x-f(-x)}{\|-x-f(-x)\|} \right) \neq 1-\epsilon$

(ii) For nonexpansive mappings we get the following

Theorem: Let $(E, \|\cdot\|)$ be a uniformly convex space. Suppose $X \subset E$ is a closed bounded convex symmetric neighborhood of the origin and let $f: X \longrightarrow E$ be nonexpansive such that (A) of Theorem 2.13 is fulfilled.

Then f has a fixed point.

The proof is based upon the fact that Id_{X} - f is demi-closed.

Theorem 2.15 (see [18]) Let ((E, || · ||), (ω, J) satisfy (*), let XCE be closed and bounded with int(X) $\neq \emptyset$. Suppose f: X \rightarrow E is continuous and pseudocontractive such that f[X] is bounded and $Z_{\text{cex}} = Z_{\text{cex}} =$

Then f has a fixed point.

<u>Proof</u>: Theorem 1 of [9] implies $\inf \{ \|x - f(x)\| | x \in X \} = 0$. Without loss of generality we may assume that

a:= $\inf\{\|\mathbf{x} - \mathbf{f}(\mathbf{x})\| \mid \mathbf{x} \in \partial \mathbf{X}\} > 0$ and that there exists $\mathbf{z} \in \mathbf{X}$ such that $\|\mathbf{z} - \mathbf{f}(\mathbf{z})\| < a$. Moreover we may assume $\|\mathbf{f}(0)\| < a$. Choose $(\mathbf{r}_n) \in (0, \infty)^{\mathbb{N}}$ such that $\lim(\mathbf{r}_n) = 0$ and $\mathbf{r}_n \|\mathbf{x}\| + \|\mathbf{f}(0)\| < a$ for $n \in \mathbb{N}$ and $\mathbf{x} \in \mathbf{X}$. Define $\mathbf{T}_n \colon \mathbf{X} \to \mathbf{E}$ by $\mathbf{T}_n := (1 + \mathbf{r}_n) \mathrm{Id}_{\mathbf{X}} - \mathbf{f}$, let $n \in \mathbb{N}$. Then we have for \mathbf{x} , $\mathbf{y} \in \mathbf{X}$: $(\mathbf{x} - \mathbf{y}) \| \mathbf{T}_n(\mathbf{x}) - \mathbf{T}_n(\mathbf{y}) \| \ge \mathbf{J}(\mathbf{x} - \mathbf{y}) (\mathbf{T}_n(\mathbf{x}) - \mathbf{T}_n(\mathbf{y})) \ge \mathbf{J}(\mathbf{x} - \mathbf{y}) (\mathbf{r}_n \mathbf{x} - \mathbf{r}_n \mathbf{y}) = \mathbf{r}_n (\mathbf{u} (\|\mathbf{x} - \mathbf{y}\|) \|\mathbf{x} - \mathbf{y}\|$, hence $(0) \|\mathbf{T}_n(\mathbf{x}) - \mathbf{T}_n(\mathbf{y}) \| \ge \mathbf{r}_n \|\mathbf{x} - \mathbf{y}\|$, and for $\mathbf{x} \in \partial \mathbf{X}$: $\|\mathbf{T}_n(0)\| = \|\mathbf{f}(0)\| < \|\mathbf{x} - \mathbf{f}(\mathbf{x})\| - \mathbf{r}_n \|\mathbf{x}\| \le \|\mathbf{T}_n(\mathbf{x})\|$. Theorem 1 of [9] implies: $0 \in \overline{\mathbf{T}_n}[\mathbf{X}]$, and because of $(0) : 0 \in \overline{\mathbf{T}_n}[\mathbf{X}]$. That means: There is $(\mathbf{x}_n) \in \mathbf{X}^{\mathbb{N}}$ such that $\mathbf{x}_n = \frac{1}{1+\kappa_m} \mathbf{f}(\mathbf{x}_n)$ for $n \in \mathbb{N}$. Lemma 2.7 completes the proof.

Remark 2.16 From Theorem 1 of [9] we learn that Theorem 2.15 remains true if the assumption "((E, $\|\cdot\|$), (u, J) satisfies (*)" is replaced by "(E, $\|\cdot\|$) is a Banach space and X has the fixed point property with respect to nonexpansive self-mappings".

Lemma 2.17 Let (E, $\|\cdot\|$) be a normed space. Suppose $X \subset \mathbb{R}$ is closed and starshaped with respect to the origin, $\lambda \in (0,1)$ and $f: X \longrightarrow E$ such that

$$\forall x \in \partial X \quad \lim_{t \to 0} \frac{1}{t} d((1-t)x + tf(x), X) = 0$$

$$t > 0$$
Then
$$\forall x \in \partial X \quad \lim_{t \to 0} \frac{1}{t} d((1-t)x + t \cdot \lambda f(x), X) = 0$$

$$t > 0$$

Theorem 2.18 Let $((E, \|\cdot\|), \mu, J)$ satisfy (*). Suppose $X \subset E$ is closed, bounded and starshaped and $f: X \longrightarrow E$ is continuous and pseudocontractive such that

$$\underset{t \to 0}{\bigvee} x \quad \underset{t \to 0}{\lim} \frac{1}{t} d((1 - t)x + tf(x), X) = 0$$

Then f has a fixed point.

<u>Proof</u>: Define \widetilde{J} : $E \longrightarrow E^*$ by J(0) := 0, $\widetilde{J}(x) :=$:= $\frac{\|\mathbf{x}\|}{\omega(\|\mathbf{x}\|)} J(\mathbf{x})$ for $\mathbf{x} \in \mathbb{E} \setminus \{0\}$. If is the (uniquely determinent) ed) duality mapping with respect to $\operatorname{Id}_{\mathbb{R}^+}$. Without loss of generality we assume X to be starshaped with respect to the origin. Choose $(\lambda_n) \in (0,1)^N$ such that $\lim_{n \to \infty} (\lambda_n) = 1$. Then we have for n e N :

- (i) Anf is continuous
- (ii) $\widetilde{J}(x-y)(\lambda_n f(x) \lambda_n f(y)) \leq \lambda_n \|x-y\|^2$
- $\bigvee_{\substack{t \to 0 \\ t \to 0}} \frac{1}{t} d((1-t)x + t \cdot \lambda_n f(x), X) = 0 \text{ (Lemma)}$

2.17)

A theorem of R.H. Martin [11] and K. Deimling [4] implies the existence of $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ such that $x_n = \lambda_n f(x_n)$ for $n \in \mathbb{N}$, and Lemma 2.7 completes the proof.

Remark 2.19 For lipschitzian pseudocontractive mappings in Hilbert spaces Theorem 2.18 was proved by D. Göhde [5]. If X is assumed to be convex it was shown in [16] that the assumption "f be lipschitzian" can be dropped.

Theorem 2.20 Let ((E, ||·||), (L, J) satisfy (*). Suppose $\emptyset + X \subset E$ is closed and bounded and $f: X \longrightarrow E$ is nonexpansive such that cof[3X]c X.

Then f has a fixed point.

Proof: Without loss of generality Oef[3 X]. Let $(\lambda_n) \in (0,1)^N$ with $\lim(\lambda_n) = 1$. For $n \in \mathbb{N}$, $x \in \partial X$ we have ve: $\lambda_n f$ is a Banach-contraction and $(\lambda_n f)(x) \in co f(\partial x) \subset X$, thus (Anf)[ax]cx.

According to a theorem due to N.A. Assad [1] there is $(\mathbf{x_n}) \in \mathbb{X}^{\mathbb{N}}$ such that $\mathbf{x_n} = \lambda_n f(\mathbf{x_n})$ for $n \in \mathbb{N}$, and by Lemma 2.7 we obtain the conclusion.

Lemma 2.21 Let (E, ||·||) be a normed space, J: $E \longrightarrow E^*$ be a duality mapping with respect to some gauge function $\mu: \mathbb{R}^+ \longrightarrow \mathbb{R}$. Suppose $x, z \in E$, M > 0, $\|x\| \ge 3M$, $\|z\| < M$.

Then (i) $0 < \mu(2M) \le \|J(x - z)\| \le \mu(\|x\| + M)$ (ii) $J(x - z)(x) \ge \mu(2M) \cdot M$.

 $\frac{\text{Proof}}{2}: \quad (i) \quad \|J(x-z)\| = \mu(\|x-z\|) \ge \mu(\|x\|-\|z\|) \ge \mu(3M-M), \quad \|J(x-z)\| \le \mu(\|x\|+\|z\|) \le \mu(\|x\|+M)$ $(ii) \quad J(x-z)(x) = J(x-z(x-z)+J(x-z)(z)$ $\geq \|J(x-z)\| (\|x-z\|-\|z\|) \ge \mu(2M) \cdot M.$

Lemma 2.22 Let (E, $\|\cdot\|$) be a normed space, M, r>0, $x \in E$, $\|x\| \ge 3M$, $\emptyset + S \subset E$ and suppose $\|z\| < M$ for $z \in S$.

Then $\inf_{z \in S} \|(1 + r)x - z\| > \inf_{z \in S} \|x - z\|$

Lemma 2.23 Let (E, |.|) be a normed space, $\emptyset + X \subset E$ and $f: X \longrightarrow E$ be nonexpansive. Suppose $x_0 \in X$ such that $(f^n(x_0))_{m \in \mathbb{Z}^+}$ is bounded. Finally let $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ such that $f(x_n) = (1 + \frac{4}{n})x_n$ for $n \in \mathbb{N}$ Then $(x_n)_{m \in \mathbb{N}}$ is bounded.

Proof: Define S:= { $f^n(x_0) \mid n \in \mathbb{Z}^+$ }. Obviously S $\neq \emptyset$. Choose M > 0 such that $\parallel z \parallel <$ M for z \in S. We claim $\parallel x_n \parallel <$ 3M for n \in N . Otherwise we would have $\parallel x_n \parallel \ge$ 3M for a suitable n \in N , hence by Lemma 2.20 $\inf_{x \in S} \|f(x_n) - z\| = \inf_{x \in S} \|(1 + \frac{1}{m})x_n - z\| > \inf_{x \in S} \|x_n - z\|$ for this n. Choose y \in S with $\|x_n - y\| < \inf_{x \in S} \|f(x_n) - z\|$. Observing $f(y) \in$ S we get $\|f(x_n) - f(y)\| \ge \inf_{x \in S} \|f(x_n) - z\| > \|x_n - y\|$ and this is a contradiction to the nonexpansiveness of f.

Theorem 2.24 Let $((E, \|\cdot\|), \mu, J)$ satisfy (*). Suppose $\emptyset + X \subset E$ is closed and starshaped and $f: X \longrightarrow E$ is nonexpansive such that:

- (i) f[ax]cx
- (ii) there is $x_0 \in X$ such that $(f^n(x_0))_{m \in \mathbb{Z}^+}$ is bounded. Then f has a fixed point.

<u>Proof:</u> Without loss of generality let X be starshaped with respect to the origin. Then for $n \in \mathbb{N}$ $(1-\frac{1}{m+1})$ f is a Banach-contraction with $(1-\frac{1}{m+1})$ f $[\partial X] \subset X$. By a theorem of N.A. Assad [1] there is $(x_n) \in X^{\mathbb{N}}$ such that $x_n = (1-\frac{1}{m+1})$ f(x_n) for $n \in \mathbb{N}$. The boundedness of (x_n) follows from Lemma 2.23; Lemma 2.7 completes the proof.

Remark 2.25 (i) Theorem 2.24 was originally proved for Hilbert spaces by J. Reinermann and R. Schöneberg [16].

(ii) In the case of a Hilbert space (E,(·,·)) and a convex X Theorem 2.24 remains valid if condition (i) is cancelled.

•	•			_
	Mikandi, a, a	h.(p.²(g)cos g, p.²(g) win g,x) 0 4 g 4 x	h(p²¹(g) coc g, p²(g) ningz)g≥s h(x coc g, x nin g,1), ²/3 € x < 1	A (cop g , kin g , x) $g \in \mathbb{R}^+$
26[3/2,2]		$(h^{-l}((g+\pi)(x-1))(x-1)), \cdots $ $(h^{-l}(g-3\pi+2\pi x)\cos(g-3\pi+2\pi x), \cdots $ $(\cos(g-3\pi+2\pi x), \cdots , 1+\frac{x}{2})$ $\ldots, 2-\frac{x}{\pi}(1-\frac{x}{2})$ $\ldots, 1+\frac{x}{2})$	$(h^{-1}(g-3\pi+2\pi\pi)\cos(g-3\pi+2\pi\pi),$, $1+\frac{2}{2}$)	$(\cos (9-3\pi+2\pi x),$
2 € [1, 3/2]		$(h^{-1}((\varphi+\pi)(x-1))\cos((\varphi+\pi)(x-1)),$ $(h^{-1}(\varphi-3\pi+2\pi x)\cos((\varphi-3\pi+2\pi x),$ $(\cos((\varphi-3\pi+2\pi x),)$	$(\kappa^{4}(9-3\pi+2\pi x)\cos{(g-3\pi+2\pi x)}_{-}$, $\frac{3}{2}x-\frac{4}{2}$)	$(\cos (g - 3\pi + 2\pi x),$, $\frac{3}{2}x - \frac{4}{2})$
	$x = 1$ $(\frac{1}{2}, 0, 2)$	• see below	$(\eta^{-1}(\eta_{-}(\eta_{-}(\pi_{-})-\pi_{-})\cos(g_{-}\pi_{-}), x, \eta_{-}), \eta_{-})$	(cos(g-11), sin (g-11), 1)

 $\frac{4}{2} \le n \le \frac{4}{3}, \ g \in [-\pi, \pi 1], \ m(g) := \eta^{-4}(|g|) + \frac{4}{1}(\frac{2}{3} - \eta^{-1}(|g|)):$ $\frac{4}{2} \le n \le \eta^{-4}(|g|)$ $\frac{4}{2} \le n \le \eta^{-4}(|g|)$ $\frac{(\frac{4}{2}, 0, 2 - \frac{|g|}{3} - \frac{|g|}{3})}{(\frac{4}{2}, 0, 2 - \frac{|g|}{3})}$ $\frac{(\frac{4}{2}, 0, 2 - \frac{|g|}{3})}{(\frac{4}{2}, 0, 2 - 6(2n - 4))}$ $\frac{(\frac{4}{2}, 0, 2 - 6(2n - 4))}{(\frac{4}{2}, 0, 2 - 6(2n - 4))}$ $\frac{4}{2} \approx n \cdot (g) + n \le \frac{2}{3}$ $\frac{4}{3} \approx n \cdot (g) + n \le \frac{$

9+0 14|+# اجواءعر

0 = 6

References

- [11] N.A. ASSAD: A fixed point theorem for weakly uniformly strict contractions, Canad. Math. Bull. 16(1973), 15-18
- [2] F.E. BROWDER: Fixed point theorems for nonlinear semicontractive mappings in Banach spaces, Arch. Rat. Mech. Anal. 21(1966), 259-269
- [3] M.G. CRANDALL and A. PAZY: Semi-groups of nonlinear contractions and dissipative sets, Journ. Funct.
 Anal. 3(1969), 376-418
- [4] K. DEIMLING: Zeros of accretive operators, Manuscripta Math. 13(1974), 365-374
- [5] D. GÖHDE: Nichtexpansive und pseudokontraktive Abbildungen sternförmiger Mengen im Hilbertraum, Beiträge zur Analysis 9(1976), 23-25
- [61 J.P. GOSSEZ: A note on multivalued monotone operators, Mich. J. Math. 17(1970), 347-350
- [7] T. KATO: Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19(1967), 508-520
- [8] S. KINOSHITA: On some contractible continua without fixed point property, Bull. Pol. Acad. Sci. 40(1953), 96-98
- [9] W.A. KIRK and R. SCHÖNEBERG: Some results on pseudo-contractive mappings, Pacific J. Math. (to appear)
- [10] J.M. LYSKO: An example for a contractible continuum without fixed point property for homeomorphisms, Bull. Acad. Pol. Sci. 20(1972), 663-666
- [11] R.H. MARTIN: Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179(1973), 399-414
- [12] G. MÜLLER: Topologisch-geometrische Eigenschaften und Fixpunkteigenschaften von sternförmigen Mengen in topologischen Vektorräumen, Diplomarbeit an der Technischen Hochschule Aachen (1976) (unpublished)

- [13] J. REINERMANN: Fixed point theorems for nonexpansive mappings on starshaped domains, Berichte der Gesellschaft für Math. und Datenverarbeitung, Bonn, Nr. 103(1975), 23-28
- [14] J. REINERMANN and V. STALLBOHM: Fixed point theorems for compact and nonexpansive mappings on starshaped domains, Comment. Math. Univ. Carolinae 15(1974), 775-779
- [15] J. REINERMANN and V. STALLBOHM: Fixed point theorems for compact and nonexpansive mappings on starshaped domains, Math. Balkanica 4(1974), 511-516
- [16] J. REINERMANN and R. SCHÖNEBERG: Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert space, Proc. on a seminar "Fixed point theory and its applications", Dalhousie Univ. Halifax N.S., Canada, June 9-12 (1975), Academic Press (to appear)
- [17] E.H. ROTHE: Some remarks on vector fields in Hilbert space, Proc. Symp. Pure Math. 18(1), Nonlinear Funct. Anal., 1970
- [18] R. SCHÖNEBERG: On the solvability of equations involving accretive and compact mappings (to appear)

Lehrstuhl C für Mathematik der Technischen Hochschule Aachen Templergraben 55 5100 Aachen B R D

(Oblatum 12.1. 1977)