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W: We give examples for open bounded starshaped
sets in all normable spaces of dimension at least 3 whose clo-
sures have not the fixed point property for compact self-map-
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0. Introduction. It is well-known that the Brouwer fix-

ed point theorem need not be true for compact starshaped sub-
sets of a finite-dimensional space (see [121,(131,0141,015)).
However, the counterexamples given with respect to this prob-
lem are essentially boundary sets in the underlying space. In
this paper we shall give even an example of a compact starsha-
p'ed subset of three-dimensional space Ra which is the closu-
re of an open starshaped set but has not the fixed point pro-
perty for continuous maps. Moreover we shall present a theo-
rem ON (strong) convergence for Banach spaces having a weakly
contimious duality mapping. Then we have both a generalization
of a corresponding result for Hilbert spaces which is due to
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M.G. Crandall and A. Pazy (3] and a couple of applications to
the fixed point theory of pseudocontractive and nonexpansive
mappings in Banach spaces possessing a weakly continuous dua-
1lity mapping (for Hilbert spaces some ol the results are known,
see [12],(13],(14],[15),[16],[18]).

For a normed linear space (Ey [+ 1) E* denotes the strong du-
al space of (E, l+ll) and for a subset X of E let X, int(X),

0 X denote the closure of X, the interior of X and the bounda-
ry of X respectively. Xc E is said to be starshaped iff there
exists x € X such that tx + (1 - t)xoe X for xeX and t €

€ [0,1]. For £: X—> E we define Fix(£):={x| xe XA £(x) = x¢,

1. A counterexample In this section we give an example

for an open bounded and starshaped subset of R3 whose closu-
re has not the fixed point property for continuous self-mapp-
ings. Moreover we discuss some consequences of this result to
R"™ (n23) and other spaces.

For the definition of the set in ]R3 described below we use

a construction and a hint of J.M. Lysko [10].

Iheorem 1,1 There exist X ¢ RY and re (X,X) such that
(1) X 1is open bounded and starshaped,
(11) Fix(f) = g@.

Proof: (1) Let p: [% +1) —> R ™* be defined as follows:

AR 4 1 yye= (n - .
<N tc101) pl1 - )1 -2) + (1 “—ari = (a-2 4+ )
mz

Define X, Y c R3 respectively by
X:= 4(r cos @,r sing,z) | re(0,1), 9 e R*, ze (-1,1)3 u

{0zir cos g, lzlr sin ¢ ,z) | re(;—,l), l¢lzl<2, plr)<
<@<plr) +13
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and
¥:= {(r cos¢, r 8ing,z) |rel0,1], ge ]1+, ze [-1,113 v
{(1z) cos¢p, |zl sing,2z) | 1£lzl 462, ge rR*'3 v
{(1z| r cos @,\zlr sing,z) | r e [%_ ,1), 1&\z1 £ 2,
p(r)e @ £ p(r) + 13.
By a straightforward but somewhat lengthy computation we ob-
tain: X is a bounded open and starshaped (with respect to the
origin) subset of .R3 such that X = Y. Now let H: .B.3 —> B3
be defined as follows:
Ir (x,y,2z) € RS and (z] £ 1 then H(x,y,z):= (x,y,2);

if (x,y,z) € R3 and [z | > 1 then H(x,y,z):= (l—:—l . l—;%" ’2) e

H clearly is a homeomorphism. Let K:= HLY]. Thus
K = {(r cosg,r sing ,2) | re 0,11, e R 1z1213v
{(cosg, sing,z) lge R*, 14 (2123 v
{(r cosg,r sing,z) | r e[%. , 1), 1£|z142, p(r) &
& @ £plr) + 13.
Clearly it 1is ex"xough to prove the existence of a g e C(K,K)
such that Fix(g) = d.
Let R: K — R be defined as follows:
1f (x,y,z)e K and z&1 then R(x,y,z):= (x,¥,1)3
if (x,y,z)€ K and x° + yz =1 and z=1 then R(x,y,z):=(x,y,z);
if (x,y,2)¢ K and x = r coscp, y =T 8ine and r EL';-,I),Z?. 1
and p(r) & @ ¢ p(r) + 1 then '
- -1 -1
(p (?)couq,p (plsing,z + r - p ()
ifz +1 - p'l(tg)zl
Rix,y,z):=
((z =1+ rlecosgg, (z -1+ r)sing,l)
ifz+r - p-l(q)<1.

For z€ [1,2) and r e[-‘i ,1) such that p(r) & ¢ & p(r) +1
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we have z + r - p-l(cy)l:zﬁ.? and conversely z + r - p-l(g)é
£1 implies

%‘ réz -1+ rép-]'(q:)<1 thus

R[KlcK := {(r cosg,r sing,1l)| ref0,11, pe R*3 0

{(cos ¢o,8incp,2z) | 2 € [1,2), e R*} U

{(p'l(cf)coag;,p'l(q») sing,z} | ze[1,21,

e R*}ck.

Moreover we have R|K’ = Id.,, thus R[K7= K.
Obviously R 1s continuous (it clearly suffices to verify this
for points (cos 9o18in @02,) With @ € R? and z e [1,2]).
We have: R is a retraction from K onto K'c K. Therefore it is
enough to search for a map he C(K,K") such that
Fix(h) = 6 (then g:= ho R C(K,K) and Fix(g) = §). Let h: K>
— R3 be defined as illustrated in the schedule on page 296 .

Remapk 1,2. (1) Let ne N , let X ¢ R® be open boun-
ded and starshaped with respect to be X. Suppose fe C(f,f‘
such that Fix(£) = @, Let j: R® — R ™! pe the natural em—
bedding. Then the "open cone over X"

Y:= {(zl,...,znﬂ) e R | Zp41 € (0,1) A -'Ile:,—,:q(zl""’zn)‘ b q
is an open bounded and starshaped subset of Rn"'l and g €

€ C(Y,Y) defined by g((1 - £)(0,...,0,1) + tj(x):= j(£((1 -

= t)b + tx)) for t € [0,1], x€ X has no fixed points ( compare
[8]). Thus we obtain by Theorem 1.1:

3 3 - =D
n!ﬂ XER™ peC(R By X open bounded starshaped A Fix(f) = ¢
mz3
(11) Let (E,¥) be a separated locally convex topologi-

cal linear space of dimension at least 3. Then there exist an
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open starshaped set K and a compact map gec(i,i) such that
Fix(g) = 0. Indeed, let F be a 3-dimensional linear subspa=
ce of E. As there are linear homeomorphisms between ]'.3 and
F, there 1s an open bounded starshaped set (with respect to
the origin) X in F and fe o(X,%) with Fix(f) = @. Let P be
any continuous linear projection of E onto F (F is a comple-—
mentary set). Set K:= Pt ( Xland g:= £oP|K. Then it is clear
that K is open and starshaped and g 18 a compact map such
that Fix(g) = @. If, in addition, (E,%) is normable, K may

be taken bounded.

2. Wﬂw-
A convergence theorem due to M.G. Crandall and A. Pazy (3]
implies several fixed point theorems for continuous pseudo-
contractive and especially for nonexpansive mappings in Hil-
bert space (see {121,[131,[141,[15],[161,[181). In the present
note we establish a variant of that theorem which guarantees
that most of these results are valid for a more general class

of spaces.

Deginition 2,1 (1) @ : RY—> R * is said to be &
gauge function : => W is continuous and strictly monotone,
@) =0, ;L_i_.;nwca(t) =2 00 .

(14) Let (E,N+ll) be a real normed space, (&: R*—
~—>R* be a gauge function and J: E—> E*. J is called a
duality mapping with respect to (w :<&=> sYE Jix)(x) =
= Ixll. @ fxll) A o= @l hx¥).

(111) ((E, +1), «,J) satisfies (%): <> (E,Nell) 18

a reflexive real normed space, (& : R*— R * i1s a gauge
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function and J: E —»E* 4ig g weakly sequentially continuous
duality mapping with respect to “ 1).

Remark 2,2 (i) Let (E,l+(|) be s real normed space,
let w: R*"— R™ be a gauge function. Then the Hahn-Banach
theorem implies the existence of a duality mapping J: E — B*
with respect to « .

(11) Let (E,(+,+)) be a real Hilbert space. Define J:

P E—FE* by J(x)(y):= (y,x) and f+|: E —> R by Ix):=
t= (x,x)1/2, Then ((g, I-1), Tdg, ,J) satisfies (%),

(111) Let p, qe(1,00), 1%*% = 1. Then we identify
2;, 2o in the usual manner. Define J: L, — 2, by
J((xd)a'lﬂ):= (Ilep-1 sign xJ)a'.eN and m: R*— R by
®m(t):= tP"L, Then ((lp, I+1), @ ,J) satisfies (% ). (See
£21).

Refinition 2,3 Let (E, I-§) be a normed space, f£XCE,
f: X—E.

(1) £ is said to be nonexpansive :M“‘gex b elx) - £(y)N 2
allx-yl

(11) £ is said to be pseudocontractive : =

x':‘x xzkl x=ylé& (1l +r)x=-y) -pele(x) - £yl

Remark 2.4 Let (E,k+l) be a real normed space, B+ X CE,
f: X—E,
(1) If £ is nonexpansive then £ is pseudocontractive.

(11) If there is a uniquely determined duality mapping

1) This 1mflies that E* ig strictly-convex (see [61) and con-
sequently J is unique.
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J: E—> E* with respect to some gauge function then we ha-
ve: £ pseudocontractive <&=> MYeXJ(x - y)(£lx) - £(y)) &

1
&J(x - y)(x - y) (see [71).

The announced convergence theorem is

Lempg 2,5 ([121) Let (E, 1) be a real normed space
admitting a weakly sequentially continuous duality mapping
J: E—» E* with respect to some gauge function w , let
(xg)e EZ", (rp)e (O,m)m such that
(1) 1im(xy) =x, (weakly), (i1) lim(rn) =0,

(111) mxe“J(xn - xm) (rnxn - rmxm)‘- 0

Then lim(x,) =x, (strongly).

Proof: We have for n € N 11:1'.’1‘:‘1(J(xn -x)) =
= J(x, = x4) (weakly), 1}'1‘!1(-rnxn + rpXp) = -rpXp (strongly).
This together with (iii) implies: J(xn - xo)(-rnxn) =

l}um(J(xn - xg) (- x, + roXn) )20, hence J(x, - xo)(-xo) =

J(x, = xo) {x, - xo) + J(x, - xo)(-xn)ZJ(xu - xo)(xu - x°)=
allx, ~x, 4 e (hxy - xoll ). Because of
lim(J(x, = xo)(-xo)) =0 we get lim( llx - x, i) =o0.

As an evident consequence of Lemma 2.5 we get

Lemma 2.6 Let ((E, 1°1),,d) satisfy (%), (x))e ",
(rg)€ (0,00)N such that (x,) is bounded, lim(rp) =0 and
M'XQ“J(xn - xp) (rxp - r X)) € 0.

Thep there is a subsequence (yn) of (xn) and ye E such that
lim(yy) = ¥ (atrongly).
Lemma 2.6 implies the following fixed point theorem for con-—

tinuous pseudocontractive mappings:
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Lemmg 2,7 (See [16]1) Leat ((E, Hell)y m,J) satisfy (%),
let #XcE be closed and £f: X —> E be continuous and pseudo-
contractive, let (x Ye XN, (A ) e (0,1)N such that

(1) (x,) is bounded, (ii) lim(A ) = 1,

(111) Yy x, = A f(x))

Then £ has a fixed point.
Eroof: We define (r.)e (O,cao)N by r,:= %m' -1l. As £

is pseudocontractive we get for n, m & N :
=J(xy - x ) (rpx), - rpXp) = J9(xy = xp)(x, - x = £lx,) +
+ £(x ))=0 (see Remark 2.4 (11)). Lemma 2.6 guarantees ye E
and a subsequence (ynl of (xn) such that lim(yn) = y (strong-
ly).
Then ye X and because of lim(y, - f(yn)) = 0 and continuity
of £ we get: £(y) = y.

The following theorems are applications of Lemma 2.7. For
Hilbert spaces and lipschitzian pseudocontractive mappings the
theorems 2.8 and 2.9 are proved in [16] and for merely conti-

nuous pseudocontractive mappings they are proved in [18].

Theorem 2,8 Lat ((E, ll*ll),«,J) satisfy (%), let XcE
be a closed neighborhood of the origin and f: X —>E be con—
tinuous and pseudocontractive such that L X] is bounded and

(Ls) x.Vax a"ﬁn £f(x) = Ax=> A £1

Then £ has a fixed point.
Broof: Choose (A ) e (0,10N with 11m(A ) = 1. For n e
eN A of 18 continuous and strictly pseudocontractive with
x%x aYR(anf)(x) =Ax=p A £ 1.

By a theorem of R, Schoneberg [181 there is (xn)e x™ such
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that x, = .ﬂ,nf(xn) for n € N . According to Lemma 2.7 we

are done.

Theorem 2,9 Lat ((E,N-1),u,J) satisfy (%), let XcE
be a closed and symmetric neighborhood of the origin and f:
: X—> E be continuous and pseudocontractive such that £ L X1

i1s bounded and xeyax £(—x) = -£(x).

Then £ has a fixed point.

Proof: For x € 3X we have J(2x) (22(x)) = J(x = (=x))-
(e(x) ~gl-x)&d(x = (=x))(x —(-x)) = J(2x)(2x). Thus £ sa-
tisfies condition (LS) of Theorem 2.8.

Lemma 2,10 Let E be a topological linear space and Xc B
be starshaped with respect to the origin. Assume f: X—&
such that

v 3 v _ =
(®) xedX A>0 te(O,A.](l"t)x tf(x) & X,

me( J\‘ZR £(x) = Ax=> A £1.

Proof: let xedX, A € R and £(x) = Ax. Suppose
2 > 1. Choose A > O such that (1 + t)x = t2(x)& X for te
€ (0,X1 and choose te (0, %1 such that (A -1)te(0,13.

Ihen

Then we have (1 + t)x - t£(x) = (1 - (A-1) t)xe X since X 1is
starshaped with respect to the origin, too. This contradicts
(R), thus A € 1.

Observing Lemma 2.10 and Theorem 2.8 we obtain

Theorem 2.11 ket ((E, B-1),«,J) satisfy (% ). Suppose
XcE is closed and starshaped with respect to Oe int(X) and
£: X— E is continuous and pseudocontractive such that £1X1
1s bounded and
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A4 v _ =
(R) @ DX aao t‘w'u(lnt)x te(x) X,

Then f has a fixed point.

Remark 2.]2 Lemma 2.10 shows that H. Rothe s fixed
point theorem for compact maps in [17] is only a special ca—
se of the general Leray-Schauder fixed point theorem for com—

pact maps.

Theorem 2,13 Let (E, N+N), «,J) satisfy (%). Suppose
XcE is a closed bounded and symmetric neighborhood of the
origin, £f: X — E is continuous and pseudocontractive such

that £(X] is bounded and

3 Ve s e(x) h2 —l2x - £(x) + £(-x) | 22
€41 el lix = £(XN-Ux+ £(-x)1
and

(B) inf{llx-£(x)ll | xedX3>0

Then £ has a fixed point.

Broof: Let € > O be chosen according to (A). Let M>0
such that [ £(x)ll <M, WxH<M for xeX, r:= inf {fx - £(x)l|
Ixed X, let (A€ (0,1)N such that 11m(A ) = 1 ama
a=-apy- M<e.r? forneN - Then we have for xe 31X,

me N:
Lianex) + A 2012 - Lhox - A £(x) » A£0-x) ) 2
4" %n n % n n
ediew v 202 - %NZx -2x) + 2(-x) 12 +

+ Q=2 0P -e) hx=£x) I Hx+ £(-x) ] +

+ (1 - g\n).“ﬁ‘ lx = £(x)Welx + £(-x)ll = €. 22 +

* A=) 4Pe(Nx = A 2GIN » (1= 4 Jw) -
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Alx v Agel0l+ (L= AW —e-x? + (1= Ay 4
<l x = Ape)Nelx + An£(=x) || , hence

x = A e0)F @l-x - A £(-x)) for n e K ,xedX,

((L € (0,1].

By a theorem of R. Schoneberg [18] we obtain a sequence (xn)
such that x, = ﬂ.nf(xn). Hence f has a fixed point by Lemma
2T

Remsrk 2.14 (1) 1In the case of a Hilbert space
(E,(+,*)) the condition (A) of Theorem 2.13 is equivalent to

- £lx —x~£(=x)
CEO xzax(fﬁ%_f(%_l)_- ' =% - £(-x “)él -€

(11) For nonexpansive mappings we get the following

Theorem: Let (E, I+l ) be a uniformly convex space. Sup~-
pose XcE 1s a closed bounded convex symmetric neighborhood
of the origin and let f£: X —>E be nonexpansive such that (A)
of Theorem 2.13 is fulfilled.

Then £ has a fixed point.
The proof is based upon the fact that Idy - £ is demi-~-

closed.

Theorem 2,15 (see [181) Let ((E,Nell), ,J) satisfy
(%), let XcE be closed and bounded with int(X)# @. Suppose

f£: X—> E is continuous and pseudocontractive such that £L X1

is bounded and z%x *‘{ax Il z=2(z)l<lx - £xIN ("mini-

mum principle")
Then f has a fixed point.
Proof: Theorem 1 of [ 9] implies inf $lix - £(x)¥|xeXi= 0.

Without loss of generality we may assume that
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a:= inf{l x - £(x)l | x€3X3>0 and that there exists ze X
such that || z = £(z) || < a. Moreover we may assume || £(0) Il < a.
Choose (r )€ (0,a>)“ such that 1lim(r,) = O and r, A xll +

+ [ £(0)l <a for n € N and xe X. Define T : X—>E by

T = 1+ ry)Idy - £, let n € N . Then we have for x, ye X:
@ (llx - yl)ﬂl‘n(x) - T, (31 Zz J(x - y)(T,(x) - T ()=
z2dx - y)lrpx = rpy) =r, @(lx-yl)lx-yl, hence

(0) T (x) - T(y)lzr llx -y, and for xe 3X:

Nyl = Ne@ll<lhx=-2)N -r Ixll&ll T (x)ll o Theo-
rem 1 of [9] implies: O¢ !.EF(—J » and because of (0): OeT [X].

That means: There is (xn)e N gueh that x, = 7174—

Yom, f(xn) for

neN . Lemma 2.7 completes the proof.

Remark 2.16 From Theorem 1 of [ 9] we learn that Theorem
2.15 remains true if the assumption "((E, -l ), «,J) satisfies
(% )" is replaced by "(E, ll-ll) is a Banach space and X has the
fixed point property with respect to nonexpansive self-mapp-
ings".

Lemmg 2,17 Lat (E, Nlll) be a normed space. Suppose Xc B
is closed and starshaped with respect to the origin,A€(0,1)
and £f: X—> E such that

1 =
xYax t1:.1.11%-1‘:(1((1 t)x » t£(x),X) =0
t>0 -
Then “\{’x tl_j,.né-;d((l -tlx+t-Af(x),X) =0
t>0

Theorem 2,18 Let ((E, Il°1),«,J) satisfy (#* ). Suppose
XcE is closed, bounded and starshaped and £f: X—> B is conti-
nuous and pseudocontractive such tﬁet

A 1
el},"o

€DK £3(( - t)x + t2(x),X) = 0
t>0
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Thep £ has a fixed point.
Proof: Define J: E —»E* by J(0):= 0, J(x):=

Ix
= wcixh) J(x) for xe EN10} . % is the (uniquely determin-

ed) duality mapping with respect to IdR,. . Without loss of
generality we assume X to be atarshaped with respect to the
origin. Choose (Ap)e (O,I)M such that 1im(A ) = 1. Then
we have for n ¢ N :

(1) At is continuous

(11) Fx - P (A 2x) = A2y & Aphx - 3] z

, 4 _
(144) JQX PrLI al(1 - t)x + t - A £(x),X) =0 (Lemmsa
t>0

2.17)
A theorem of R.H. Martin [11) and K. Deimling [4) implies the
existence of (X )g. € xN sueh that x, = A £(x;) for me N,

and Lemma 2.7 completes the proof.

Remark 2,19 For lipschitzian paeudocontractive mappings
in Hilbert spaces Theorem 2.18 was proved by D. Gohde 151, If
X is assumed to be comvex it was shown in [16] that the assum—

ption "f be lipschitzian" can be dropped.

Theorem 2.20 Lat ((E,I*W),m,J) satisfy (% )» Suppose
@+ XcE 1s closed and bounded and f: X — E is nonexpansive
such that co £[38Xlc X.

Then £ has a fixed point.

Proof: Without loas of generality Oef L9 X). Let
(Ap)e 0,0 with lim(Ap) =1, ForneN , x¢ 3X we ha-
ve: AL is a Banach-contraction and (A f£)(x)e co £03XIcX, .
thus (A £) (3 X1cXe '
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According to a theorem due to N.A. Assad [1] there is (x,) e
€ XM such that Xp, = Apf(x,) for n€ N , and by Lemma 2.7

we obtain the conclusion.

Lemmg 2,21 Let (E, ll-ll) be a normed space, J: E — E*
be a duality mapping with respect to some gauge function
“ R*—> R . Suppose X, ze E, M>0, I xll =z3M, llz|l< M.
Ihen (1) O< @M = Nd(x - 2)l« w(l x|+ W

(11) J(x - 2)(x) =z w(2m) - M,

Broof: (1) NJx=-2)l= @w(lx=z1)2 w(lhxl=1z0)>
z@3M =M, Udlx-2) e @lixl+hzl)2 «(hxll+m

(11) J(x = 2)(x) = J(x - z(x = z) + J(x - 2)(z)

Zhalx = 2) Il (lx -zl -Hzl)2 wem-m

Legmg 2.22 Let (E,l‘ll) be a normed space, M, r>0,
xe¢E,IxI123M, #+ScE and suppose Iz <M for z€S.
Then izn;‘f’sl(l +r)x -zl> iznét‘sl\x -zl

Proof: Let J: E~— E* be a duality mapping with res-
pect to Idk" . Then we have for ze€ S:! Talx = z)I N(1 +
+r)x =20 Z2J(x - 2)(x - 2) + J(x - z)(rx) = JJ(x - 2} Ix -
=zl +rJ(x - 2)(x) =2 1 J(x - 2)I Ix-zfl+r.2.M- M, amd
from

2
1L +m)x=-2zlzlx -zl + %Z I x=-2zll+
2 2
ll?::l_l{%M and M::—?M > O the conclusion follows.

Lommg 2,23 Let (E, I+l ) be a normed space, H#XcE and
f: X—> E be nonexpansive. Suppose xoex such that

(£7(x4) )p g 2+ 18 bounded. Finally let (x), p ¢ X™ such that

4
£lxy) = (1 + n)%, forn e N

Then (xn)lnew is bounded.
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Proof: Define Si={f"(x )| ne Z*}. Obviously S+0.
Choose M>0 such that [z ll<M for z€S. We claim [ x, | < 3M
for n « N . Otherwise we would have | x, I\ = 3M for a suit-

eble n € N , hence by Lemma 2.20 inf 1£(x. ) - zll=
2€S n

= inf (1 » —)x -zll> inf fx, - z | for this n. Choose
yeS with iz, = yll< inf llf(x ) - z1l. Observing £(y)€ S we
get l£lx) - £l 2 in.f £(xy) = z1>0x; -yl and this

is a contradiction to the nonexpansiveness of f.

Theorem 2,24 Let ((E, -1, @,J) satisfy (% ). Suppose
@+ XcE is closed and starshaped and f: X—» E is nonexpan-
sive such that:
(1) £(éXlecX
(11) there is xoe X such that (£7(xg)), ¢ g+ 1is bounded.
Then f has a fixed point.

Proof: Without loss of generality let X be starshaped

with respect to the origin. Then for n € N (- ) £

m+4
1

ts a Banach-contraction with (1 - — )P L3X)cX. By a

theorem of N.A. Assad [ 11 there is (xn)e x™ such that X, *

= (1 - nﬁ- J£(x,) for ne N . The boundedness of (x,) fol-

lows from Lemma 2.23; Lemma 2.7 completes the proof.

Remark 2,25 (1) Theorem 2.24 was originally proved for
Hilbert spaces by J. Reinermann and R. Schoneberg [161.

(11) In the case of a Hilbert space (E,(+,*)) and a con-
vex X Theorem 2.24 remains valid if condition (1) is cancel-
led.

- 295 -



R..w. -%)9-7 .o.wv =8
[4
(Ve w g " - -
o gr-42) o §) Wr=-%59-3'0"3) 0=6&
by 000 §|m. IIL-.hLI - A—&—Ul(n&vg - '&r ,
IR Ciay -1 (®)), =) (i& e % |5
() w ~ 4 z
\Rk..&:ﬁulgﬂulwvvoou«v - - S22 g+
£rvstyw (Byw 5 % 5(161), 3% (161), %3 x5 L
rsn, - b, debyw ‘[uwarb ‘Esusl
(b (8B W' ie-byom) || () ‘i (x-Bysoo(se-( %) %) 2h) mopy vy © (0P| =%
T A iée
T.m -x& G nw. -z g «E-HE-z % ‘Y192
b ZUT + A8 = H) c00) |MrssT+aC-8) 9B +48€ =), Ay | (Y =) (1 45))99 ((1~7) S+ 8)), )
ﬁhn.’V\‘-c A*.’V Cose Nﬂ.Ml Ivvm.lﬂa.l i ¢
:..mﬂk« +ieg - ) o) .iank«...kn.@e%«uh«...kmn&uv.#v web(( T&an.’&e sﬁawnani.&uvs& (3 w10
KLY b 3G Ly b wynH o w)y YTy, .omo.&
(FBuw bom)y || L28@bun by bowny thyy| (2B urv(h) b ‘bwos) dhyw ...ﬂnn...‘

- 296 -



112

(2]

£31

4]

[5)

[&]

(n

(8l

£91

[10)

[11)

[12)

References

N.A. ASSAD: A fixed point theorem for weakly uniformly
strict contractions, Canad. Math. Bull. 16(1973),
15-18

RLBMWR:ﬁmdmmtmwmmfwnmnmnamMm-
tractive mappings in Banach spaces, Arch. Rat.
Mech. Anal. 21(1966), 259-269

M.G. CRANDALL and A. PAZY: Semi-groups of nonlinear con=
tractions and dissipative sets, Journ. Funct.
Anal. 3(1969), 376-418

K. DEIMLING: Zeros of accretive operators, Manuscripta
Math. 13(1974), 365-374

D. GOHDE: Nichtexpansive und pseudokontraktive Abbildun-=
gen sternformiger Mengen im Hilbertraum, Beitra-
ge zur Analysis 9(1976), 23-25

J.P. GOSSEZ: A note on multivalued monotone operators,
Mich. J. Math. 17(1970), 347-350

T, KATO: Nonlinear semigroups and evolution equations,
J. Math. Soc. Japan 19(1967), 508-520

S. KINOSHITA: On some contractible continua without fix-
ed point property, Bull. Pol. Acad. Sci. 40(1953),
96-98

W.A. KIRK and R. SCHONEBERG: Some results on pseudo-con—
tractive mappings, Pacific J. Math. (to appear)

J.M. LYSKO: An example for a contractible continuum with-
out fixed point property for homeomorphisms,
Bull. Acad. Pol. Sci. 20(1972), 663-666

R.H. MARTIN: Differential equations on closed subsets of
a Banach space, Trans. Amer. Math. Soc. 179€1973),
399-414

G, MULLER: Topologisch-geometrische Eigenschaften und
Fixpuhkteigenschaften von sternformigen Mengen
in topologischen Vektorraumen, Diplomarbeit an
der Technischen Hochschule Aachen (1976) (unpub-
1ished)

- 297 -



[13] J. REINERMANN: Fixed point theorems for nonexpansive
mappings on starshaped domains, Berichte der
Gesellschaft fir Math. und Datenverarbeitung,
Bonn, Nr. 103(1975), 23-28

[14) J. REINERMANN and V. STALLBOHM: Fixed point theorems
for compact and nonexpansive mappings on star-
shaped domains, Comment. Math. Univ. Carolinae
15(1974), 775-779

[15) J. REINERMANN and V. STALLEOHM: Fixed point theorems
for compact and nonexpansive mappings on stars-
haped domains, Math. Balkanica 4(1974), 511-516

[16] J. REINERMANN and R. SCHONEBERG: Some results and prob-
lems in the fixed point theory for nonexpansive
and pseudocontractive mappings in Hilbert spa-
ce, Proc. on a seminar "Fixed point theory and
its applications", Dalhousie Univ. Halifax N.S.,
Canada, June 9-12 (1975), Academic Press (to ap-
pear)

(17) E.H, ROTHE: Some remarks on vector fields in Hilbert spa-
ce, Proc. Symp. Pure Math. 18(1),Nonlinear Funct.
Anal.,1970

(18] R. SCHONEBERG: On the solvability of equations involving
accretive and compact mappings (to appear)

Lehrstuhl C fir Mathematik

der Technischen Hochschule Aachen
Templergraben 55

5100 Aachen

BRD

(Oblatum 12.1. 1977)

_298_



	
	Article


