

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

Abstract: Fixed point theorems for multi-valued mappings, satisfying a certain inward condition are obtained.

<u>Key words</u>: Fixed point, multi-valued mappings, metrically inward mappings, contractions, contractive mappings.

AMS: 54H25 Ref. Z.: 3.966.3

1. Introduction. Let (X,d) be a metric space, P(X) the class of all non-empty bounded closed subsets of X and D the Hausdorff metric on P(X) induced by d. Given a subset K of X, a mapping $T: K \longrightarrow P(X)$ is said to be (i) contractive on K if D(T(x),T(y)) < d(x,y) for all x,y in K with $x \neq y$ and (ii) inward on K if for each x in K, there exists $v \in K$ such that d(x,v) + d(v,T(x)) = d(x,T(x)), where $v \neq x$ unless d(x,T(x)) = 0, where $d(x,T(x)) = \inf\{d(x,y) \mid y \in T(x)\}$. In case T is single-valued, the notion of "a contractive mapping" was first introduced by M. Edelstein in [3] and the notion of "an inward mapping" was called "a metrically inward mapping" in [2].

The author is partially supported by National Research Council of Canada under Grant No. A-8096.

The concept of inwardness for mappings defined on topological vector spaces was first studied by B.R. Halpern in his thesis [4]. Recently, many interesting results related to this concept have been obtained by F.E. Browder, Halpern-Bergman, K. Fan, Petryshyn-Fitzpatrick, W.A. Kirk, J. Caristi and by many others. See [2] and [5] for more detailed references.

2. Main results. W.A. Kirk pointed out ([2], Remarks) that Caristi's results Theorem (2.1)', Theorem 2.1 and hence also Theorem 2.2 can be proved by using a result of A. Brondsted ([1], Theorem 2). For our purpose, we shall state a particular case of Brondsted's result below.

Lemma 1. ([11, Theorem 2) Let (M,d) be a complete metric space. If φ is a lower semi-continuous mapping from M into $[0,\infty)$ then for each $x\in M$ there exists a point $u\in M$ such that $d(x,u) \neq \varphi(x) - \varphi(u)$ and $d(u,y) > \varphi(u) - \varphi(y)$ for all $y\in M$ with $y\neq u$.

We shall show that the above lemma can be used to generalize Caristi's results for multi-valued mappings:

Theorem 2: Let (X,d) be a metric space and K a non-empty complete subset of X. Suppose that T: $K \longrightarrow P(X)$ is inward on K and is also a contraction:

 $D(T(x),T(y)) \leq k d(x,y)$, for all $x,y \in K$

where $k \in [0,1)$ is a fixed constant. Then T has a fixed point in K.

Proof. Define $\phi(x) = \frac{1}{1-k} d(x,T(x))$ for $x \in K$. Then

 ϕ is continuous as T is a contraction. By Lemma 1, there exists us K such that

(*) $d(u,y) > \varphi(u) - \varphi(y)$, for all $y \in K$ with $y \neq u$.

We claim that d(u,T(u))=0. Suppose this were not true. Since T is inward on K, there exists $v\in K$ with $v\neq u$ such that

$$d(u,v) = d(u,T(u)) - d(v,T(u))$$

$$\leq d(u,T(u)) - Id(v,T(v)) - D(T(v),T(u))$$

$$\leq d(u,T(u)) - d(v,T(v)) + k d(v,u)$$

Thus $d(u,v) \leq \varphi(u) - \varphi(v)$, which contradicts (*). Therefore, d(u,T(u)) = 0 and hence $u \in T(u)$ since T(u) is closed.

Another application of Lemma 1 gives us the following:

Theorem 3. Let (M,d) be a complete metric space and f a mapping defined on M such that for each $x \in M$, f(x) is a nonempty subset of M. Suppose that there exists a lower semi-continuous function $\phi: M \longrightarrow \Gamma(0,\infty)$ such that one of the following conditions holds:

- (A) For each $x \in M$, $D(x,f(x)) \leq \varphi(x) - \varphi(u), \text{ for some } u \in f(x).$
- (B) For each $x \in M$, f(x) is compact and $d(x, f(x)) \le \varphi(x) \varphi(u)$, for all $u \in f(x)$.

Then there exists $u_0 \in M$ such that $u_0 \in f(u_0)$.

Next we shall show that if the set K in Theorem 2 is compact, then the condition that T being a contraction can be weakened to being "contractive".

Theorem 4. Let (X,d) be a metric space and K a compact subset of X. Suppose T: $K \longrightarrow P(X)$ is inward on K and is also contractive on K, then T has a fixed point in K.

<u>Froof.</u> Since T is contractive on K and K is compact, there exists u K such that

 $d(u,T(u)) = \inf \{d(x,T(x)): x \in K\}.$

We claim that d(u,T(u))=0. Suppose this were false. Since T is inward on K, there exists $v\in K$ such that v+u and d(u,v)+d(v,T(u))=d(u,T(u)). Since $d(v,T(v)) \neq d(v,T(u))+D(T(u),T(v))$ and since T is contractive, one has d(v,T(v)) < d(u,T(u)), which contradicts the choice of u in K. Thus d(u,T(u))=0. Hence $u\in T(u)$ since T(u) is closed.

Finally, we remark that even when T is single-valued,
Theorem 2 (1.e. Theorem 2.2 in [2]) and Theorem 4 are incomparable in the sense that neither is more general than the other.

References

- [1] A. BRØNDSTED: On a lemma of Bishop and Phelps, Pacific J. Math. 55(1974), 335-341.
- [2] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215(1976), 241-251.
- [3] W. EDELSTEIN: On fixed and periodic points under contractive mappings, J. London Math. Soc. 37(1962), 74-79.
- [4] B.R. HALPERN: Fixed point theorems for outward maps, Doctoral Thesis, University of California, Los Angeles, California, 1965.
- [5] W.V. PETRYSHYN and P.M. FITZPATRICK: Fixed point theorems for multi-valued non-compact inward mappings, J. Math. Anal. Appl. 46(1974), 756-767.

Department of Mathematics

University of Wisconsin,

Milwaukee

Milwaukee, Wisconsin 53201

U.S.A.

Department of Mathematics

Dalhousie University

Halifax

Nova Scotia

Canada

(Oblatum 14.12.1976)

