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MULTIVALUED GENERALIZED CONTRACTIONS AND FIXED POINT THEOREMS
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A%Hmsﬁ We prove fixed point theorems for multivalued
generalized contraction and contractive mappings in metrical-
1y convex metric spacea. Theorem 1 generalizes a fixed point
theorem of Assad-Kirk for multivalued contraction mappings,

Theorem 2 that of Assad for multivalued contractive mappingse.

ds: Multivalued generalized contraction (contrac-
tive) mapping, metrically convex metric space.

AMS: Primary 47H1O, 54H23 Ref. Z.: 7.978.53
Secondary 54C60, 54E50

1. Introductiop. Recently fixed point theorems for mul-
tivalued contraction or contractive mappings were obtained by
Nedler (9], Assad-Kirk [1] and Assad (2], etc. On the other
hand, Kannan (5] initiated studies of certain type of mappings
which have many similarities to contraction and nonexpansive
mappings. His ideas were further studied and generalized by
Reich [10], Biri& [3]1, Kannan [ 81, Hardy-Rogers [ 51, Goebel-
Kirk-Shimi (4] and Wong [11, 12, 13], etc.

In this paper we shall give fixed point theorems for mul=-
tivalued generalized contractiqn mappings and generalized con—
tractive mappings. Theorem 1 is an extenaion of a theorem in
Assad-Kirk [ 11. Theorem 2 extends a fixed point theorem in As~
sad [ 2],

- 247 -



The author wishes to express his thanks to Professors
H. Umegaki and W. Takahashi for their encouragement in prepa-

ring this paper.

2. Preliminarjes. Let (X,d) be a metric space. For any
xe X and Ac X, we denote d(x,A) = Inf {d(x,y): yeA3%. It can

easily be checked the following lemma.
Lemmg 1. For any x,ye€X and AcX, we have

la(x,a) - d(y,a) | &« d(x,y).

Let <¢B(X) denote the family of all nonempty closed
bounded subsets of X and D be the Hausdorff metrie on <R (X)
induced by the metric d on X. The following lemmas are direct
consequences of the definition of Hausdorff metric.

Lemma 2. If A, B ¢ €R(X) and xe A, then for any posi-

tive number € , there exists a- ye B such that
d(x,y)& D(A,B) + € .

Lemma J. For eny x¢ X and any A, B € €B(X), it follows
that

| alx,a) - a(x,B)| « D(a,B).

(X,d) is said to be metrically convex if for any x, ye X
with x% y, there exists an element ze X, x%z*y, such that

a(x,z) + d(z,y) = d(x,y).
In Assad and Kirk [11] the following is noted.

Lemma 4. If K is a nonempty closed subset of a comp-
lete and metricallyfonvex metric space (x,d), then for any
x¢ K, y¢K, there exists a ze 3K (the boundary of K) such
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that

alx,z) + d(z,y) = alx,y).

3. Generalized contraction mappings. Let K be a nonem—
pty closed subset of a metric space (X,d) and T be a mapping
of K into <€ AB(X). T is said to be a generalized contract-
ion mapping if there exist nonnegative real numbers o, R,

+ with o<+ 23 +# 2y < 1 such that for any x, ye€K,
DeT(x),T(y)) & xdlx,y) + Bitalx,T(x)) + aly,T(y)))3
+ pdalx,T(y)) + aly,T(x))¥ .

£ =9 =0, then T is called <C-contraction.
The following theorem holds.

Thgggem 1., Let (x,d) be a complete and metrically con-—
vex metric space, K a nonempty closed subset of X. Let T be

a generalized contraction mapping of K into €MD (X)e If for
<x+3+ +3+

eny x € 8K, T(x)c K and T-03 -7 < 1, then the-
re is a z €K such that z€T(z).
o +f3+ «3+2)
Proof. Denote k = 1-p-7) , then 04 k<l.

If ¥ = 0, then the conclusion of Theorem 1 is obvious. So we
may assume that k>O0. We choose sequences ix,% inK and
iyp% in X in the following way. Let x € 9K and x; =¥y €
€ T(x ). By Lemma 2, there exists a Y€ T(x,) such that

d(yl,yz)an(m(xo) yT(xy)) + 1_1 +—pﬁ;—9’z -

If yye K, let xp = Jp. If yy¢ K, choose an element x,e& K such
that d(xl,xz) + d(xz,yz) = d(xl,yz) using Lemma 4. By indue-
tion, we can obtain sequences. 4x,} , 4 yo% such that for
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n=1,2,...,

(1) Ve € Txp),

(20 alygu¥pyy) & DBy ) 2xy)) + 54Z 40,
where

(3) Yne1 = Xpey i Yp, € K, or

(4) d(xn,xn+1) + d(xn+1,yn+1) = d(xn,yn+1) if y ¢ K.

We shall estimate the distance d(xn,xnﬂ) for nz2,

There arise three cases.

(1) The case that Xp = ¥ and Xy =Y, . We have

d(xn,xm‘ll = d(yn,ynﬂ)

£ DiTbxy 1), ixy) + 582 wn

£ «dlxy g,xp) + Bialx, ;,Tix, 1)) + alx,,Tix,))3

* 7480, Thxg)) + 4l Hx, )} + 4585 "
& xd(’xn_l,xn) + 4 d(xn_l,xn) + d(xn,xml)i

+ 'T{d(xn-l’xn)’ * d(xn’*n-o»l” * —J—%——l = ;?;, K,

hence

)& (ks B 22)alx,yxy) + S5ESEE

n
dlxpsxp,, ) & 1°°—’-‘£':‘%:— dlxpy,xy) + TT‘(?W .

(11) The case that x, = y, and Xpe1# Vpe1 BY (4) we
obtain that

(1 -0 -'r)d(xn,xm_l

and

d(xn,xml)é Alxps¥pey) = d(yn,ynﬂ) .

As in the case (i), we have :
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n
ec¢§+ p k
A(ypr¥pe1) € T = -7 dlxp_y.Xp) + 7 BT !
thus

n

x+Bar
d(xn,xn_’l)‘ I—-F% d(xn_l,xn) + I#_;? .

(111) The case that xp# y, amd X, .4 = ¥p, ¢ In this ca=

se Xp 1 = ¥po holds. We have

alxp,x

nol)é d(xn,yn) +* d(yn’xml) = d(xp,y,) + d(yn,ynﬂ). .

By (2) it Zollows that
a(ypsTpey) & DIT(xy 1), Tlxy)) + {-—:-%E—ét, x®
eaod(xn_l,xn) + ﬁ&d(xn_l,T(xn_l)) + dlxp,T(x,))3

s dalag xy)) + alxg, T, 03 » 55T 0"
&ocdlxy_y,x)) + Bidlx,_q,¥y) + d(xn,xn,,_l))»}

+pdalxyy,x,) + alxpyxp ) + d(xn,yn)} * -%——:-g—:% K",

Since 0£ e < 1 and dlxp_,,Xp) + alxy,¥,) = alx,_1,¥q), we
obtain

d(xn"‘nﬂ.)“ (1 -vr)d(xn,yn) * (¢+7)d(xn_1.xn) +

* Balxy ) * (Br)alxy,xy,) + _}_‘-’-g—:% =

+ (peylalxg,x ) + *—;%% k7,

+0 + -
S EX alxp,_1,¥,) * isa+7y

and
d(xn,xm,l) £ 5

As in the case (11),we have
n-1

g«rg*z "
d(xn_l,yn)‘r 1-A-7 d(xn-Z’!n-l) * m .
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Thus it follows that

x+(3+27)(1 +3+
d(xn,xnﬂ.) P2 S—(l—@-—ﬂ-z_)’r—)f—LlL d(xn_2 ,xn_l)

-1 n
k" k
1 -B-7 M 1 *Bey
The case that X # ¥, and xm_l* Ynel does not occur. Since

f—:—%:—?té %ﬂiﬁ.z_’@m’ for nZ 2 we have
=P=7

n
kd(x,_,,x,) + l—-k(w ,y OT

o N In‘

d(xn’xm»l) £ {
n-2%p-1) * 1 -7 °

kd(x

|
Put J" = k2 max (Il xg =xll, Ixy - lel ), then by induction

we can show that

alxp,x ,,)& k% (F+ IT(sn-_? ) (n=1,2,...).

It follows that for any m>n21,
q
m-1 1 =t 7,1
7,1 i( .
d(xn,xm) % J,;,%m.(k )Rl S I—ﬁ a,gm. K=

This implies that {xn} is a Cauchy sequence. Since X is com
plete and K is closed, ixn} converges to some point z €K. By
the way of choosing { x,} , there exists a subsequence {x_ 3}

By

of {x,% such that xni = ¥n, (1 =1,2,...). Then we have

alxy (8D 4 D(T(x, 1), Ta))

& e&d(xni_l,z) + 34 d(xni_l,'l'(x )) » d(z,1(2))}

ng-1
+7d d(xni_l,‘l'(z)) + d(z,T(xni_l) )}

b add(xni_l,xni) + d(xni,z)} + ﬁ{d(xni_l,xni)
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+ d(z,xni) + d(xni,'.l‘(z))} - T{d(lni_lyxni)

+ d(xni,T(z)) +* d(xni,z)l s
thus
Q -p-r)d(xni,r(z));e(ou B+ 4d(xn1.z) * d(xni-l”ni)}

and
<+f+ al( ) +dlx, _q9X, )f o
d(xni,T(z)) 4 T—e-_t-{s- - i *n,® *n,-1'*ny

Therefore, d(xni,'r(z))—» 0 as 1 —» @ . By the inequality
d(z,T(z))éd(xni,z) + d(xni,T(z))

and the above result, it follows that d(z,T(z)) = 0. Since
T(z) is closed, this implies that z € T(z). Qqe.e.d.

Since every Banach space is metrically convex, we have

the following corollary for singlevalued mappings.

Corollary 1. Let E be a Banach space and K be a nonemp-
ty closed subset of E. Let £ be a generalized contraction
mapping of K into E. If £(8Klc K and

= I-{!(Eat *92 < 1, then there exists a (unique) fixed

point of £ in K.

3. Generalized contractive mappings. Let K be a non-
empty closed subset of a metric space (X,d). Let T be a map-
ping of K into @ RB(X). T is said to be a generalized cont-
ractive mapping if there exist nonnegative real numbers oC ,

@ , 9 such that for any X, y €K with x#y,

D(T(x),T(y)) < «dix,y) + Bialx,T(x)) + a(y,T(y))3
+y{dlx,T(y)) +dly,7(x))} ,
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where O0<c< + 23+ 29 < 1, If B =22=0amd < = l, then T
1s called contractive. T is said to be continuous at x,eK
if for any € > 0, there exists a d"> 0 such that
D('.l‘(x),T(xo),)< € whenever d(x,x )< o~ . If T is continu-
ous at each point of K, we say that T is continuous on K,

We shall give a fixed point theorem for continuous gene-

ralized contractive mappings.

Iheorem 2. Let (¥,d) be a complete and metrically con-
vex metric aspace and K be a nonempty compact subset of X. Let
T be a generalized contractive mapping of K into ¥A(X) and
continuous on K. If for any x € 8K, T(x)c K and

(c+B+2)() +p+0)
(1 -{3-3’)2
such that ze T(z).

£1, then there exists an element z&K

Proof. Define a function g of K into R* (nonnegative
real numbers) by g(x) = d(x,T(x)) (xe K), then by Lemma 1 and

Lemma 3, we have

lglx) - gly) &l a(x,?(x)) - d(y,T(x)|
+laly,?(x)) - d(y,™(y))) & d(x,y) + D(T(x),T(y)).

Hence g is continuous and since K is compact, there exists a
Z€K such that g(z) = min fg(x): xe K3} . Suppose that g(z)>o0,
then we obtain a contradiction. For each n = 1,2,.,., there

exists a x, € T(z) for which
d(x,,2z) & g(z) + % .

Ir X, €K for n sufficiently large, then some subsequence

{xnii of -ixni converges to an x,€ K. We may assume that

xo* z, then
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glx,) = d(xo,T(xo))é D(T(z),T(x,))
< xd(z,x) » 34 d(z,T(z)) + d(xo,T(xo))}
+ yialz,T(x,)) + d(xo,T(z))/f
& «glz) + piglz) + glx )y + 74 glz) + glx )3
and

(1-p3- 2")8(‘0)'< (x<+B+2)glz).

glx)< £EEET g1 gla),

contradicting the minimality of g(z). If there exists a sub—

sequence {xni} of ix,} such that xnit K, then z ¢ K. For

simplicity, we may assume that zn¢ K, n=1,2,¢s0. By Lomma

Thus

4, for each n there exists a ypé€ O K for which d(xn,yn) »
» d(yn,z) = d(xn,z). Since K is compact and T(yn)c K, there
exists wy€ T(y,) such that alx,,w) = d(xn,T(yn)). We may al-

so assume that -lyn} converges to some y,é€ OK. Let
ge = xd(yy,z) + 4 aly,,T(yy)) + a(z,T(z))}
+ yialy,,T(z)) + alz,T{y,))3 - D(T(yo),T(z)),

then € > 0, because y, ¥ Z. For this € , there exists a po-
sitive integer N such that for any nzN
‘5) d(yo,z) - d"n,z)< 2¢ ’

(6) zly,) - €< 8lyy)

(7 d(xn,z)< glz) +2¢ , and

(8) D(T(yp) ,T(z))< D(T(y,),T(2)) + 2¢
Then for any nZ N, we have

gly,) -e< glyy) = a(yn,T(yy))

=255 =



& d(yn,'n).éd(yn,xn) + d(xn.wn) = d(xn,yn) - d(xn,r(yn))
£ dlxy,yp) + DT(2),T(y,))< alxp,y,) + D(T(z),T(y,)) + 2¢
= dlx;,y,) +ocd(y,,z) *» f“d(yo,T(yo)) + d(z,T(z))?

+ ridly,,1(z)) + a(z,T(y,))3 - 6¢€

&d(xp,y,) * (ec+ 29 da(y,,2z) + (3 #’rlg(yo) + (B+)glz)-
-6 < (1 +B3+7)g(z) + (B+r)gly) -2

hence
)< P g 2
Take a ue T(yo) such that d\'yo,'l'(y')) = d(yo,u). Since g(z)>
>0, u+yo. Thus we obtain
glw)= d(u,T(u)) & D(Ty,),T(u))
< «d(y ,u) + ﬁ{d(yo,’l‘(yo) )+ dlu,™(w)}
+ rid(y,,T(u)) + d(u,‘.l‘(yo))x}

£ (ec*ﬂ-'-'a')g(yo) + (B+7)glw)

and
glul< E‘(;L:%-: g(y,).

Therefore it follows that

gluy< {28220 +3+2) glz) - {x2B+M)e

(1-p-9)° (1 -3-2°2
bglg) -{x*fe)e
R Y

This is a contradiction. Hence g(z) = 0 and since T(z) is

closed, we have ze€ T(z). q.e.d.

In Banach spaces, the following corollary holda.,
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Corollary 2., Let K be a nonempty compact subset of &
Banach space E and £ be a continuous genereslized contractive
mapping of K into E. If £(OK)c K and

(234 2) (1;(3*& 41, then there exists a (unique) fixed
(1-p3-2)
point of £ in K.

Remark. If for any xeK, ?(x)c K in Theorem 1 (or Theo-
(cwBrg)() *»B+2) .y
2

1-p-72)
(or k41) and that X is metrically convex are unnecessarye

rem 2),then the conditions that k =
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