

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,2 (1977)

MULTIVALUED GENERALIZED CONTRACTIONS AND FIXED POINT THEOREMS

Shigeru ITOH, Tokyo

Abstract: We prove fixed point theorems for multivalued generalized contraction and contractive mappings in metrically convex metric spaces. Theorem 1 generalizes a fixed point theorem of Assad-Kirk for multivalued contraction mappings, Theorem 2 that of Assad for multivalued contractive mappings.

Key words: Multivalued generalized contraction (contractive) mapping, metrically convex metric space.

AMS: Primary 47H10, 54H25 Ref. Z.: 7.978.53 Secondary 54C60, 54E50

1. <u>Introduction</u>. Recently fixed point theorems for multivalued contraction or contractive mappings were obtained by Nadler [9], Assad-Kirk [1] and Assad [2], etc. On the other hand, Kannan [5] initiated studies of certain type of mappings which have many similarities to contraction and nonexpansive mappings. His ideas were further studied and generalized by Reich [10], Čirič [3], Kannan [8], Hardy-Rogers [5], Goebel-Kirk-Shimi [4] and Wong [11, 12, 13], etc.

In this paper we shall give fixed point theorems for multivalued generalized contraction mappings and generalized contractive mappings. Theorem 1 is an extension of a theorem in Assad-Kirk[1]. Theorem 2 extends a fixed point theorem in Assad[2].

The author wishes to express his thanks to Professors

H. Umegaki and W. Takahashi for their encouragement in preparing this paper.

2. <u>Preliminaries</u>. Let (X,d) be a metric space. For any $x \in X$ and $A \subset X$, we denote $d(x,A) = \inf \{d(x,y): y \in A\}$. It can easily be checked the following lemma.

Lemma 1. For any x,y & X and A C X, we have

$$|d(x,A) - d(y,A)| \leq d(x,y).$$

Let $\mathcal{LB}(X)$ denote the family of all nonempty closed bounded subsets of X and D be the Hausdorff metric on $\mathcal{LB}(X)$ induced by the metric d on X. The following lemmas are direct consequences of the definition of Hausdorff metric.

Lemma 2. If A, B $\in \mathcal{CB}(X)$ and $x \in A$, then for any positive number ε , there exists a $y \in B$ such that

$$d(x,y) \leq D(A,B) + \varepsilon$$
.

<u>Lemma 3.</u> For any $x \in X$ and any A, B $\in \mathcal{CB}(X)$, it follows that

$$|d(x,A) - d(x,B)| \leq D(A,B)$$
.

(X,d) is said to be metrically convex if for any $x, y \in X$ with x+y, there exists an element $z \in X$, x+z+y, such that

$$d(x,z) + d(z,y) = d(x,y).$$

In Assad and Kirk [1] the following is noted.

Lemma 4. If K is a nonempty closed subset of a complete and metrically convex metric space (X,d), then for any xe K, ye K, there exists a ze 8 K (the boundary of K) such

that

$$d(x,z) + d(z,y) = d(x,y).$$

3. Generalized contraction mappings. Let K be a nonempty closed subset of a metric space (X,d) and T be a mapping of K into $\mathcal{CB}(X)$. T is said to be a generalized contraction mapping if there exist nonnegative real numbers ∞ , β , γ with $\infty + 2\beta + 2\gamma < 1$ such that for any x, $\gamma \in K$,

$$D(T(x),T(y)) \leq \propto d(x,y) + \beta \{(d(x,T(x)) + d(y,T(y)))\}$$
$$+ \gamma \{d(x,T(y)) + d(y,T(x))\}.$$

If $\beta = \mathcal{T} = 0$, then T is called ∞ -contraction. The following theorem holds.

Theorem 1. Let (x,d) be a complete and metrically convex metric space, K a nonempty closed subset of X. Let T be a generalized contraction mapping of K into (x,d). If for any $x \in \partial K$, $T(x) \subset K$ and $\frac{(x+\beta+\gamma)(1+\beta+\gamma)}{(1-\beta-\gamma)^2} < 1$, then there is a $z \in K$ such that $z \in T(z)$.

Proof. Denote $k = \frac{(\infty + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2}$, then $0 \le k < 1$. If k = 0, then the conclusion of Theorem 1 is obvious. So we may assume that k > 0. We choose sequences $\{x_n\}$ in K and $\{y_n\}$ in K in the following way. Let $x_0 \in \partial K$ and $x_1 = y_1 \in T(x_0)$. By Lemma 2, there exists a $y_2 \in T(x_1)$ such that

$$d(y_1,y_2) \leq D(T(x_0),T(x_1)) + \frac{1-\beta-3}{1+\beta+3} k.$$

If $y_2 \in K$, let $x_2 = y_2$. If $y_2 \notin K$, choose an element $x_2 \in K$ such that $d(x_1, x_2) + d(x_2, y_2) = d(x_1, y_2)$ using Lemma 4. By induction, we can obtain sequences $\{x_n\}$, $\{y_n\}$ such that for

n = 1, 2, ...,

(1)
$$y_{n+1} \in T(x_n)$$
,

(2)
$$d(y_n, y_{n+1}) \leq D(T(x_{n-1}), T(x_n)) + \frac{1-\beta-2}{1+\beta+2} k^n$$

where

(3)
$$y_{n+1} = x_{n+1} \text{ if } y_{n+1} \in K, \text{ or }$$

$$(4) \quad d(\mathbf{x}_n, \mathbf{x}_{n+1}) + d(\mathbf{x}_{n+1}, \mathbf{y}_{n+1}) = d(\mathbf{x}_n, \mathbf{y}_{n+1}) \text{ if } \mathbf{y}_{n+1} \notin \mathbb{K}.$$
 We shall estimate the distance $d(\mathbf{x}_n, \mathbf{x}_{n+1})$ for $n \ge 2$.

There arise three cases.

(i) The case that $x_n = y_n$ and $x_{n+1} = y_{n+1}$. We have

$$d(x_n, x_{n+1}) = d(y_n, y_{n+1})$$

$$\leq D(T(x_{n-1}),T(x_n)) + \frac{1-\beta-\gamma}{1+\beta+\gamma}k^n$$

$$\leq \ll d(x_{n-1}, x_n) + \beta d(x_{n-1}, T(x_{n-1})) + d(x_n, T(x_n))$$

$$+ \gamma \{d(x_{n-1}, T(x_n)) + d(x_n, T(x_{n-1}))\} + \frac{1 - \beta - \gamma^{-}}{1 + \beta + \gamma^{-}} k^{n}$$

$$\leq \propto d(x_{n-1},x_n) + \beta \ell d(x_{n-1},x_n) + d(x_n,x_{n+1})$$

+
$$\gamma i d(x_{n-1}, x_n) + d(x_n, x_{n+1}) i + \frac{1 - \beta - 2^{\nu}}{1 + \beta + 2^{\nu}} k^n$$
,

hence

$$(1 - \beta - \gamma)d(x_n, x_{n+1}) \le (\alpha + \beta + \gamma)d(x_{n-1}, x_n) + \frac{1 - \beta - \gamma}{1 + \beta + \gamma}k^n$$

an d

$$\mathtt{d}(\mathtt{x}_{n},\mathtt{x}_{n+1}) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} \ \mathtt{d}(\mathtt{x}_{n-1},\mathtt{x}_{n}) \ + \ \frac{\mathtt{k}^{n}}{1 + \beta + \gamma} \ .$$

(ii) The case that $x_n = y_n$ and $x_{n+1} + y_{n+1}$. By (4) we obtain that

$$d(x_n, x_{n+1}) \le d(x_n, y_{n+1}) = d(y_n, y_{n+1}).$$

As in the case (i), we have

$$d(y_n, y_{n+1}) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} d(x_{n-1}, x_n) + \frac{k^n}{1 + \beta + \gamma},$$

thus

$$\mathbf{d}(\mathbf{x}_{n},\mathbf{x}_{n+1}) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} \; \mathbf{d}(\mathbf{x}_{n-1},\mathbf{x}_{n}) \; + \; \frac{\mathbf{k}^{n}}{1 + \beta + \gamma} \; .$$

(iii) The case that $x_n \neq y_n$ and $x_{n+1} = y_{n+1}$. In this case $x_{n-1} = y_{n-1}$ holds. We have

$$\mathtt{d}(\mathtt{x}_{n}, \mathtt{x}_{n+1}) \neq \mathtt{d}(\mathtt{x}_{n}, \mathtt{y}_{n}) + \mathtt{d}(\mathtt{y}_{n}, \mathtt{x}_{n+1}) = \mathtt{d}(\mathtt{x}_{n}, \mathtt{y}_{n}) + \mathtt{d}(\mathtt{y}_{n}, \mathtt{y}_{n+1}).$$

By (2) it Pollows that

$$d(y_n,y_{n+1}) \neq D(T(x_{n-1}),T(x_n)) + \frac{1-\beta-3^{-}}{1+\beta^{+}} x^n$$

$$\leq \cot(x_{n-1},x_n) + \beta \cdot \cot(x_{n-1},T(x_{n-1})) + \cot(x_n,T(x_n))$$

$$+\gamma \cdot d(x_{n-1},T(x_n)) + d(x_n,T(x_{n-1})) + \frac{1-\beta-\gamma}{1+\beta+\gamma} k^n$$

$$+ \gamma \cdot d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + d(x_n, y_n) \cdot + \frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n$$

Since $0 \le \infty < 1$ and $d(x_{n-1}, x_n) + d(x_n, y_n) = d(x_{n-1}, y_n)$, we obtain

$$d(x_n, x_{n+1}) \le (1 + \gamma)d(x_n, y_n) + (\alpha + \gamma)d(x_{n-1}, x_n) + (\alpha + \gamma)d(x_n, y_n)$$

+
$$\beta d(x_{n-1}, y_n)$$
 + $(\beta + \gamma) d(x_n, x_{n+1})$ + $\frac{1 - \beta - \gamma}{1 + \beta + \gamma} k^n$

$$\leq (1 + \gamma)d(x_{n-1}, y_n) + \beta d(x_{n-1}, y_n)$$

+
$$(\beta + \gamma)d(x_n, x_{n+1})$$
 + $\frac{1-\beta-\gamma}{1+\beta+\gamma}k^n$,

and

$$\mathtt{d}(\mathtt{x}_{\mathtt{n}},\mathtt{x}_{\mathtt{n}+1}) \leq \frac{1+\beta+\gamma}{1-\beta-\gamma} \ \mathtt{d}(\mathtt{x}_{\mathtt{n}-1},\mathtt{y}_{\mathtt{n}}) + \frac{\mathtt{k}^{\mathtt{n}}}{1+\beta+\gamma} \ .$$

As in the case (ii), we have

$$\mathbf{d}(\mathbf{x}_{n-1},\mathbf{y}_n) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} \; \mathbf{d}(\mathbf{x}_{n-2},\mathbf{x}_{n-1}) \; + \; \frac{\mathbf{k}^{n-1}}{1 + \beta + \gamma} \; .$$

Thus it follows that

$$\begin{array}{l} d(x_{n},x_{n+1}) \neq \frac{(\alpha+\beta+\gamma)(1+\beta+\gamma)}{(1-\beta-\gamma)^{2}} \ d(x_{n-2},x_{n-1}) \\ + \frac{k^{n-1}}{1-\beta-\gamma} + \frac{k^{n}}{1+\beta+\gamma} \end{array}.$$

The case that $\mathbf{x}_n + \mathbf{y}_n$ and $\mathbf{x}_{n+1} + \mathbf{y}_{n+1}$ does not occur. Since

$$\frac{\alpha+\beta+\gamma}{1-\beta-\gamma} \leq \frac{(\alpha+\beta+\gamma)(1+\beta+\gamma)}{(1-\beta-\gamma)^2}, \text{ for } n\geq 2 \text{ we have}$$

$$d(x_{n},x_{n+1}) \leq \begin{cases} kd(x_{n-1},x_{n}) + \frac{k^{n}}{1-\beta-\gamma^{n}}, \text{ or } \\ kd(x_{n-2},x_{n-1}) + \frac{k^{n-1}+k^{n}}{1-\beta-\gamma^{n}}. \end{cases}$$

Put $\sigma = k^{\frac{1}{2}} \max (\|x_0 - x_1\|, \|x_1 - x_2\|)$, then by induction we can show that

$$d(x_n, x_{n+1}) \le k^{\frac{4n}{2}} (of + \frac{n}{1 - \beta - 2^n}) (n = 1, 2, ...).$$

It follows that for any m> n≥1,

$$d(x_{n},x_{m}) \leq \sigma \sum_{i=m}^{m-1} (k^{\frac{1}{2}})^{i} + \frac{1}{1-\beta-2} \sum_{i=m}^{m-1} i(k^{\frac{1}{2}})^{i}.$$

This implies that $\{x_n\}$ is a Cauchy sequence. Since X is complete and K is closed, $\{x_n\}$ converges to some point $z \in K$. By the way of choosing $\{x_n\}$, there exists a subsequence $\{x_n\}$ of $\{x_n\}$ such that $x_{n_i} = y_{n_i}$ (i = 1,2,...). Then we have

$$\begin{split} \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}},\mathbf{T}(\mathbf{z})) &\leq \mathrm{D}(\mathbf{T}(\mathbf{x}_{\mathbf{n_{i}}-1}),\mathbf{T}(\mathbf{z})) \\ &\leq & \simeq \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{z}) + \beta \cdot \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{T}(\mathbf{x}_{\mathbf{n_{i}}-1})) + \mathrm{d}(\mathbf{z},\mathbf{T}(\mathbf{z})) \} \\ &+ \gamma \cdot \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{T}(\mathbf{z})) + \mathrm{d}(\mathbf{z},\mathbf{T}(\mathbf{x}_{\mathbf{n_{i}}-1})) \} \\ &\leq & \simeq \mathrm{fd}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{x}_{\mathbf{n_{i}}}) + \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}},\mathbf{z}) \cdot \} + \beta \cdot \mathrm{fd}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{x}_{\mathbf{n_{i}}}) \end{split}$$

+
$$d(z,x_{n_{\underline{i}}})$$
 + $d(x_{n_{\underline{i}}},T(z))$ + $\mathcal{T}id(x_{n_{\underline{i}}-1},x_{n_{\underline{i}}})$
+ $d(x_{n_{\underline{i}}},T(z))$ + $d(x_{n_{\underline{i}}},z)$,

thus

$$(1-\beta-\gamma) \, \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}},\mathbf{T}(\mathbf{z})) \leq (\alpha+\beta+\gamma) \, \, \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}},\mathbf{z}) \, + \, \mathrm{d}(\mathbf{x}_{\mathbf{n_{i}}-1},\mathbf{x}_{\mathbf{n_{i}}}) \, \, \}$$

and

$$\mathbf{d}(\mathbf{x_{n_i}},\mathbf{T(z)}) \leq \frac{\alpha + \beta + 2^r}{1 - \beta - 2^r} \{\mathbf{d}(\mathbf{x_{n_i}},\mathbf{z}) + \mathbf{d}(\mathbf{x_{n_i-1}},\mathbf{x_{n_i}})\} .$$

Therefore, $d(x_{n_{\underline{i}}},T(z))\longrightarrow 0$ as $i\longrightarrow \infty$. By the inequality

$$d(z,T(z)) \leq d(x_{n_i},z) + d(x_{n_i},T(z))$$

and the above result, it follows that d(z,T(z))=0. Since T(z) is closed, this implies that $z\in T(z)$. q.e.d.

Since every Banach space is metrically convex, we have the following corollary for singlevalued mappings.

Corollary 1. Let E be a Banach space and K be a nonempty closed subset of E. Let f be a generalized contraction mapping of K into E. If $f(\partial K) \subset K$ and $(\alpha + \beta + \gamma)(1 + \beta + \gamma) < 1$, then there exists a (unique) fixed point of f in K.

3. Generalized contractive mappings. Let K be a non-empty closed subset of a metric space (X,d). Let T be a mapping of K into $\mathcal{CB}(X)$. T is said to be a generalized contractive mapping if there exist nonnegative real numbers ∞ , β , γ such that for any x, y \in K with $x \neq y$,

$$D(T(x),T(y)) < \infty d(x,y) + \beta \{d(x,T(x)) + d(y,T(y))\}$$
$$+ \gamma \{d(x,T(y)) + d(y,T(x))\},$$

where $0<\infty+2\beta+2\gamma\leq 1$. If $\beta=\gamma=0$ and $\infty=1$, then T is called contractive. T is said to be continuous at $x_0\in K$ if for any $\varepsilon>0$, there exists a $\sigma>0$ such that $D(T(x),T(x_0))<\varepsilon$ whenever $d(x,x_0)<\sigma$. If T is continuous at each point of K, we say that T is continuous on K.

We shall give a fixed point theorem for continuous generalized contractive mappings.

Theorem 2. Let (X,d) be a complete and metrically convex metric space and K be a nonempty compact subset of X. Let T be a generalized contractive mapping of K into $\mathcal{LB}(X)$ and continuous on K. If for any $x \in \partial K$, $T(x) \subset K$ and $\frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \leq 1$, then there exists an element $z \in K$ such that $z \in T(z)$.

Proof. Define a function g of K into R^+ (nonnegative real numbers) by g(x) = d(x,T(x)) ($x \in K$), then by Lemma 1 and Lemma 3, we have

$$|g(x) - g(y)| \le |d(x,T(x)) - d(y,T(x))|$$

+ $|d(y,T(x)) - d(y,T(y))| \le d(x,y) + D(T(x),T(y)).$

Hence g is continuous and since K is compact, there exists a $z \in K$ such that $g(z) = \min \{g(x) : x \in K\}$. Suppose that g(z) > 0, then we obtain a contradiction. For each $n = 1, 2, \ldots$, there exists a $x_n \in T(z)$ for which

$$d(x_n,z) \leq g(z) + \frac{1}{n}.$$

If $x_n \in K$ for n sufficiently large, then some subsequence $\{x_n\}$ of $\{x_n\}$ converges to an $x_0 \in K$. We may assume that $x_0 \neq z$, then

$$g(x_{0}) = d(x_{0}, T(x_{0})) \neq D(T(z), T(x_{0}))$$

$$< \alpha d(z, x_{0}) + \beta i d(z, T(z)) + d(x_{0}, T(x_{0}))$$

$$+ \gamma i d(z, T(x_{0})) + d(x_{0}, T(z))$$

$$\leq \alpha g(z) + \beta i g(z) + g(x_{0}) + \gamma i g(z) + g(x_{0})$$
and

 $(1-\beta-\gamma)g(x_0)<(\infty+\beta+\gamma)g(z).$

Thus

$$g(x_0) < \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} g(z) \leq g(z),$$

contradicting the minimality of g(z). If there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \notin K$, then $z \notin \partial K$. For simplicity, we may assume that $x_n \notin K$, $n = 1, 2, \ldots$ By Lemma 4, for each n there exists a $y_n \in \partial K$ for which $d(x_n, y_n) + d(y_n, z) = d(x_n, z)$. Since K is compact and $T(y_n) \subset K$, there exists $w_n \in T(y_n)$ such that $d(x_n, w_n) = d(x_n, T(y_n))$. We may also assume that $\{y_n\}$ converges to some $y_0 \in \partial K$. Let

$$8e = \infty d(y_0, z) + \beta d(y_0, T(y_0)) + d(z, T(z))$$

$$+ \gamma d(y_0, T(z)) + d(z, T(y_0)) - D(T(y_0), T(z)),$$

then $\varepsilon > 0$, because $y_0 + z$. For this ε , there exists a positive integer N such that for any $n \ge N$

(6)
$$g(y_0) - \varepsilon < g(y_n)$$
,

(7)
$$d(x_n, z) < g(z) + 2\varepsilon$$
, and

(8)
$$D(T(y_n),T(z)) < D(T(y_0),T(z)) + 2\varepsilon$$

Then for any n≥N, we have

$$g(y_0) - \varepsilon < g(y_n) = d(y_n, T(y_n))$$

hence

$$g(y_0) < \frac{1+\beta+\gamma}{1-\beta-\gamma} g(z) - \frac{\varepsilon}{1-\beta-\gamma}$$

Take a $u \in T(y_0)$ such that $d(y_0, T(y_0)) = d(y_0, u)$. Since g(z) > 0, $u \neq y_0$. Thus we obtain

$$g(u) = d(u,T(u)) \neq D(T(y_0),T(u))$$

$$< \alpha d(y_0,u) + \beta \{d(y_0,T(y_0)) + d(u,T(u))\}$$

$$+ \gamma \{d(y_0,T(u)) + d(u,T(y_0))\}$$

$$\neq (\alpha + \beta + \gamma)g(y_0) + (\beta + \gamma)g(u)$$

and

$$g(u) < \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} g(y_0)$$
.

Therefore it follows that

$$g(u) < \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} g(z) - \frac{(\alpha + \beta + \gamma)\varepsilon}{(1 - \beta - \gamma)^2}$$

$$\leq g(z) - \frac{(\alpha + \beta + \gamma)\varepsilon}{(1 - \beta - \gamma)^2}.$$

This is a contradiction. Hence g(z)=0 and since T(z) is closed, we have $z\in T(z)$. q.e.d.

In Banach spaces, the following corollary holds.

Banach space E and f be a continuous generalized contractive mapping of K into E. If $f(\partial K) \subset K$ and $\frac{(\alpha + \beta + \gamma')(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} \le 1$, then there exists a (unique) fixed point of f in K.

Remark. If for any $x \in K$, $T(x) \subset K$ in Theorem 1 (or Theorem 2), then the conditions that $k = \frac{(\alpha + \beta + \gamma)(1 + \beta + \gamma)}{(1 - \beta - \gamma)^2} < 1$ (or $k \le 1$) and that X is metrically convex are unnecessary.

References

- [1] ASSAD N.A., KIRK W.A.: Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43(1972), 553-562.
- [2] ASSAD N.A.: Fixed point theorem for set valued transformations on compact sets, Boll. Un. Mat. Ital.(4)8
 (1973), 1-7.
- [3] ČIRIČ L.B.: Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(1972), 265-272.
- [4] GOEBEL K., KIRK W.A., SHIMI T.N.: A fixed point theorem in uniformly convex spaces, Boll. Un. Mat. Ital.(4) 7(1973), 67-75.
- [5] HARDY G., ROGERS T.: A generalization of a fixed point theorem of Reich, Canad.Math. Bull. 16(1973),201-206.
- [6] KANNAN R.: Some results on fixed points, Bull. Calcutta Math. Soc. 60(1968), 71-76.
- [7] KANMAN R.: Some results on fixed points IV, Fund. Math. 74(1972), 181-187.
- [8] KANNAN R.: Fixed point theorems in reflexive Banach spaces, Proc. Amer. Math. Soc. 38(1973), 111-118.
- [9] NADLER S.B. Jr.: Multi-valued contraction mappings, Pa-

cific J. Math. 30(1969), 475-488.

- [10] REICH S.: Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4)4(1971), 1-11.
- [11] WONG C.S.: Common fixed points of two mappings, Pacific J. Math. 48(1973), 299-312.
- [12] WONG C.S.: Fixed point theorems for generalized nonexpansive mappings, J. Austral. Math. Soc. 18(1974), 265-276.
- [13] WONG C.S.: Fixed points and characterizations of certain maps, Pacific J. Math. 54(1974), 305-312.

Department of Information Sciences
Tokyo Institute of Technology
Oh-Okayama, Meguro-Ku, Tokyo 152
Japan

(Oblatum 2.4. 1976)