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TERNARY RINGS ASSOCIATED TO TRANSLATION PLANE

Josef KLOUDA, Praha

Abstraet: It is well known that an affine plane is a
translation plane if and only if there exists a quasifield
coordinatizing it. Simple condition for planary ternary ring
with zero coordinatizing a translation plane is deduced by
Klucky and Markovd in [4]. We shall define a J-ternary ring
or JTR to be a PTR that 30¢S such that
T(a,O0,c)= T(a,b,c) implies T(a,0,y)= T(a,b,y) VY yesS
T(0,a,c)= Tlb,a,c) implies T(O,a,y)= T(b,a,y) V YES.

In [5] Martin defines an intermediate ternary ring (ITR).
Strucurally, the JTR lie between the PTR and ITR. The purpo-
se of this note is to deduce a necessary and sufficient con-
dition that a given JTR coordinatizes a translation plane.
This generalizes the main results of (4] and [51,

Key words: Planar ternary ring, translation plane, in-
termediate ternary ring, generalized Cartesian group.

AMS: 20N10 Ref. Z.: 2.722.9

A coordinatization of a projective plane: We shall give

a coordinatization to a projective plane of order n. Let S
be any set of cardinality n. Let o be any element which is
not in S and let OeS. We pick one point L and one line £
joining through L in the plane. For any Mel£ denote by ﬁ the
set of all lines containing M. Let m+>(m) be a bijection of
Su{co} onto £ such that [w]l=£. Let x > [x] be a bijection of
suf{wt onto T such that [0l=£. Let y +>( O,y) be a biject-

ion of S onto [01\4L}. We denote by AuB (anb) the line join-
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ing two distinct points A,B (the common point of two dist-
inct lines). Let o syt S—» S be two mappings. Then to e-
very point P off £ we assign coordinates (x,y) if and only if
P-[x]r‘l((ecl(x))u(O,y)) . We shall now dualize the above
construction in the following sense. Let ¢ +»[0,c] be a bi-
jection of S onto (8)\ 4L} . Then to every line p off T we
assign coordinates [m,c] if and only if p = (m) u ([er.z(m):ln
mlo,c]) .

Planar ternary rings:

Definition 1: Let S be a set containing two different
elements at least and let ternary operation T be given on it.
An ordered pair (S,T) will be called a planar ternary ring
or PTR i1f it holds:

(1) Va,b,ceS 31xeS T(a,b,x) = ¢
(2) Va,b,c,deS;xeS T (x,a,b) =T(x,c,d)
(3) Ya,b,c,deS; agc3I(x,yles? T(a,x,y) = b, T(c,x,y) = d

An intermediate ternary ring on ITR ( see [5],p.1187)
is a PTR (S,T) such that (Il) and (Iz) holds.

(Il) T(m,a,y)= T(m,b,y) = ¢, a%b implies T(m,x,y)=c¢

V xes
(Iz) T(a,x,y) = T(b,x,y) = ¢, a%b implies T(m,x,y) = ¢

Vnes

A J-ternary ring or JTR is a PTR (S,T) such that there
exists 0eS where
(Jl) T(m,0,a) = T(m,x,a) implies T(m,0,y) = T(m,x,y)

Y yes
(Jz) T(0,x,a) = T(m,x,a) implies T(O,x,y) = T(m,x,y)

Vyes
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Let (S,T) be a PTR. Then (S,T) defines a projective pla-
ne sr(S,T) as follows.
Points: (x,y),(m), (c€); m,x,yeS, co not in S
Lines: [m,cl:= 4{(x,y)| x,yeS, T(m,x,y)=c}

[x1:= {(x,y) | yes}
{wl:= {(0)} ul(m)| mest?

In [21,03)1(Cp. 114-115),[51(p. 1186) there was shown that
x(s,T) is a projective plane. Thus a solution in (3) is uni- .
que.

Proposition 1: Let ar be a projective plane. Then there
exists a JTR ¢ $,T) such that o (S,T) is igomorphic to o .

Proof: Let the projective plane @ be coordinatized as
above by elements from a set S. Define a ternary operation by
T(m,x,y) = ¢ 1f and only if (x,y) is on [m,c] . Then it is ob-
vious that the (S,T) is a JTR. One has only to check (1),(2),
(3),03)) ,(J,) in turn.

Remark: Let (S,T) be a JTR. Then there are mappings «;:
«,: S—>S such that ¥Yx,y€S T(eri(x),O,y) = T(&l(x):x:Y)

¥ m,yes T(O,ecz(m),y)=T(m,¢2(m),y)
and such that for every point (x,y) and every linelm,cl in
w(s,T) is (x,y) = [ xIn(le, (x)) u (0,y))

[m,c]-(m)u(lwz(m)) n [o,cD

Proposition 2: Let (S,T) be an ITR. Then (S,T) is a

JTR. "
Proof: The proposition is a direct consequence of Theo-
rem 6 in [5]1, p. 1188.

Vertically transitive planes: (S,t) is said to be the

dual ternary system of PTR (S,T) if c = T(m,x,t(x,m,c))
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V m,c,xeS or equivalently y = t(x,m,T(m,x,y))
Vm,x,yeS.

Proposition 3: The dual of a JTR i8 a JTR.

Proof: The proof is straightforward.

In the following we shall denote by j;’ the solution of
the equation t(x,0,0) = t(x,a,a) for each a¢S\ {0} and by
jg the solution of the equation T(x,0,0) = T(x,a,a) for
each aeS \{0}; additionally we define j! = jz = 0. Thus for
each a€s is t(j;,0,0) = t(j;,a,a) and T(j§,0,0)= T(jz,a,a).
Now let us introduce in S two binary operations +l’+2 by
virtue of

a+ bi= T(a,igt(Gl,0b)0
a+, b: = t(a,ji,T(ji,o,b)) Y a,bes

2
Remark: It can be easily verified that

(4\c+1a-a+1o=o+2a=a+20-a V aes
(5) VYa,beS 3!xeS a+ x=b
Ya,beS 3lyes a+,y= b

Definition 2: Let (S,T) be a PTR. The projective plane
w(S,T) is said to be a vertically transitive plane (by [4],
p. 620) if for each x,y,zeS there exists a translation © of
the affine plane (Szf-ﬂm,c] | myceS} udlx])!| xeS}) such that
(x,y)% = (x,2).
. Let (S,T) be a JTR and (S,t) its dual. By (1)
Cy: Yy —> T(0,0,y) , ”;02: c +» t(0,0,c) are bijective map-
pings and @,@, = @, = id.

Proposition 4: Let (S,T) be a JTR. Then the projective

plane ar (S,T) i8 a vertically transitive plane if and only if
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(6) Ym,c,x,yeS (T m,x,y +5 c) = T(mx,y) +; (0& +, 0)91

Proof. I. Suppose first that (S,T) (6) holds. We
shall see that (S,+,) is a loop. By (4),(5) it is suffici-
ent to show that Vu,ceS 3!lves v +, ¢ = u.

Let a +2 c=Db +2.c and let m,xeS such that x#0,
T(m,0,a) = T(m,x,b). Then
T(m,0,a +, c) = T(m,0,a) + (o‘D"+2 c)% -
= T(m,x,b) + (O@"+2 c)§H = T(m,x,b +5 c) and by (Jl)
T(m,0,a) = T(m,x,a) = T(m,x, blhence a = b. Now let ueS.
Choose m,Xx,yeS such that x%O
T(m,0,u) = T(m,x,y +y c) and denote
(o,v) : = [m,T(m,x,y)1 n [0). Then there is T(m,0,v) =
= T(m,x,y), T(m,0,u) =T(m,x,y +5 ¢)= T(m,x,y) +1 (o;az +y c)ﬂ'=
= T(m,0,v) +1 (Opz +y c)P1=-T(m,0,v +y c) from here v +, ¢ =
=u.

Thus, the map 7%4: Sz-—’ S2 defined by
(x,y)zt = (x,y +, c) is a translation. Since (0,0)1% =
= (0,c), the or(S,T) is a vertically transitive plane.

II., Let or(S,T) be a vertically transitive plane. Then
for each a&S there is a translation %, mapping (0,0) into
(0,a). Then (y,y)qwa (y,y +, a) for each yeS hence (O,y)ﬁ~=
=(0,y +y a) for each yeS and (x,y)r~ - (x,y +y a) for
each x,yeS. It is obvious that [0,01%'- [O'(092+2 a)‘a"J
this implies [m,c]ta’ = [mec + (opz +5 a)?" ]l . Hence,
(x,y) € [m,T(m,x,y)] for each m,x,y€S from here (x,y)tb €
e[m,T(m,x,y)]t"’ then (x,y +y a)elm,T(m,x,y) + (Opa+2a)9']
consequently T(m,x,y +, a) = T(m,x,y) + (on +y a)a‘

for each m,x,y,aeS.
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Corollary 4.1: Let (S,T) be a JTR and let x (S,T) be
a vertically transitive plane. Then (S, +4) » (5,4—2) are
groups and (S,4;) is isomorphic to (S, +,).

Proof: Consider translations @ : (0,0)+ (0,a),
6: (0,0)> (0O,b), ©: (0,0) > (O,c). Then
(0,(a +, b) +, c) = (0,009% "% . (0,07 "% .
(0,a +, (b +, ¢)) .

The second result follows from (6). In particular, for
every a,bes (a +, b)% = T(0,0,a +, b) =
= T(0;0,a) +; (0% +, )% 2 a™ + (0% +, 5)™ . Since
for each y,a,bes y +, (a +, b)=(y +, a) +, b, we have
, 0% =
= (y 4 P 4 (%2 4, 03%a (oF14 (0% 4, ) o)

¥ 4 (™ 4, Cat b a(y 4, (as

¢, P4
+ (o2 +, )27,
Setting y = o2 , we have
cofa P ®, ® Pa P4
(072 +, (a +; b))7T= (0"%+, a)'" +, (0 +, b)7 .
Remark: The group of all translations of a vertically
transitive plane ar(S,T) is Abelian if and only if (S,+1) is

commutative.

Now let us introduce two binary operations e ®

2 by

virtue of

T(m,x,0)= m 01X Y m,xeS

t(x,m,0) = x *,m VmxeSs

Corollary 4.2: Let (S,T) be a JTR and let 7 (S, T)be a
vertically trangitive plane. Then
x 4 (o2 + )

m +, (of + y)?’-

(7) Ym,x,y¢s T(m,x,y)=m ‘9

t(x,m,y) = x ‘s
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Proof: Let as set y = 0 in (6). Then
T(m,x,c) = M *1x + (0@" +5 c)% for each m,x,ceS.

Proposition 5: Let (s,T) be a JTR. The projective pla-
ne w(s,T) is a vertically transitive plane if and only if
(8) (S,+1), (S,+2\ are groups
(9) there exists an isomorphism @ : (S,+2)——>(S,+1) such

that ¥Ym,x,y€S T(m,x,y)= m ;X +) yq "

Proof: I. Let (8),(9)hold for (s,T). Then for each m,x,
y,ceS T(m,x,y +, c)s m X +1(y +, c)"r m e X +1(yq+1cq)-
= (m X+ v + ¢ = T(m,x,y) +1 f
)

¢
0+1c

thus ¢? = (0%‘ +, c)P" for each ceS therefore T(m,x,y +, c)=

Setting me x=0, y=0 , we have (O

P2 +y C)Pq -
= T(m,x,y) + (of2 +y c)P" for each m,X,y,C€S.
II. The second part follows immediately from Corollary
4.1 and Corollary 4.2.
Corollary 5.1: Let (s,T) be a JTR such that
T(0,0,y)= y for each y€S. . Then the projective plane
o (s,T) i8 a vertically transitive plane if and only if
(1) (S,+1) is a group
(11) V m,x,y€s T(m,x,y )= m ;X +, ¥
Proof: I. v m,x,y,cés T(m,X,y + Cl=m o%X + (y +1c)=
= (m o)X +; y) +¢ = T(m,x,y) +; c.
Hence 7r(S,T) is a vertically transitive plane.
ITI. If or(S,T) is 4 vertically transitive plane, then
by Proposition 5 (S,+1) is a group and there exists an iso-
morphism ¢ : (S,+2)-—~b( S,+1) such that T(m,x,y)=m X -f-1 yq
for each m,x,yeS.This yields then y= T(0,0,y)=0 +1y9= v

for each yeS hence T(m,x,y)=m X +1 y for each m,x,Y€S.
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Corollary 5.2: Let(S,T) be a JTRand (S,t) its dual.

Let o (S,T) be a vertically transitive plane, then there
exists an isomorphism cp:(S,+2) — ( S,+1) such that
¥Ym,x,ye s T(m,x,y) = mex +; ad s

t(x,m,y) = X e,m +, y"" s Megx + (xeom ¥ =0

Proof: Since it holds T(m,x,t(x,m,0)) = O for each m,x &
€ S, we have me;x +, (x-2 m)¥? = 0. Since it holds T(m,x,t(x,
m,y)) =y for each m,x,y€ S, we obtain mex +; (t(x,m,y))?=y
thus (t(x,m,y)) ¥= 5 meyx +1y=(x-2m)9 +1Y from what you
say t(x,m,y) = X e,m +2y9"1 .

Definition 3: Let S be a set +,¢ two binary operations
on S. (S,+,*) will be called a generalized Cartesian group
(see [41,p. 620) if S has two distinct elements at least and
if it holds:

(10) (s,+) 1is a group
(11) VYa,b,ceS; asb I{xes -xa + xb = ¢
(12) Va,b,ceS; a£bIxes ax - bx = ¢

Propoposition 6: Let C:=(S,+,) be a generalized

Cartesian group and let ¥: S—> S be a bijection such that
0% = o. If ve define T(C,q), (m,x,y) = mex + y¢
for each m,x,ye S then (S,T (C, %)) <8 a JTR and
7 (s,T(C,®)) is a vertically transitive plane.
Proof: The proof is straightforward. One has only to
check (1),(2),(3),(3) ,(3),(8),(9) in turn.
Proposition 5 and Proposition 6 now imply the next
Theorem 1: Let (S,T) be a JTR. Then the projective plane
o (S,T) <8 a vertically transitive plane if and only if

(2) Ceom( S,+1,'1) 18 a generalized Cartesian group
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(ii) there exists a bijection @: S—»S  such that o¥=o0,

T = T(c,‘?)-

Translation planes: First we give some general remarks.

Let us investigate a projective plane or= (P,L) . Let us
distinguish a line £ . Then by an affine plane r(2) we
shall as usual mean the restriction of & to the incidence
structure (PN £ ,{m~N(mA£)] meLN{L}}),The points from

PN £ will be called proper, the points of £ improper or ,
directions. A projective plane & = (P,L) is said to be an
£ -transitive plane if the group of all translations of ar (L)
transitively operates on the set of all points of (L), Let
u, v be affine lines of ar(£) with different directions,
then the projective plane ¥ is a AL -transitive plane if and
only if the group of all translations of or (L) transitively
operates on the lines u, v.

Proposition 7: Let C=(s,+, * ) be a generalized
Cartestan group and @ : S—> S a bijection such that 0%= 0.
Then the projective plane ar(S,T (C, @)) is a Lol -
transitive plane <f and only tf
(13) Vx,aeS IxeS Vmes
mx*- Ox = ma - Oa + 00 - mO + mx - Ox

Proof: I. It suffices to prove that tne group of all
translations transitively operates on proper points of the
line (0,01 In this case it suffices to show that for each
line [al there exists a translation @ such that [O]"= [a].
pefine a mapping ’ta: (x,y)—> (x,; (-0x"+ Ox + y¥)¥-1
with x €S uniquely determined by (13) (see (12)) . Clearly

’b‘a is bijective. Further it is obvious that the image af
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the line {x] 1is the line [ x7]. Let us consider a line
Tmel. 1f (x,y) € [ mec), then T(C, &) (m,x,y) =

mx + y¥= c. Hence it is .
T(C,¢) (mx; (-0x"+ ox + vy9)¥9-1) =
=(mx™- 0x7)+ 0x + y9=(ma - 0a + 00 - mO + mx - Ox ) +
+0x + y9= (ma - 0a + 00 - m0) + ¢
or equivalently (x; (-ox“+ ox + y¥#)¥~7) e
€ [mma-0a+00-m0o+cl. If x= x~ for some x€ S, then
necessarily a = O therefore 't'a= id. This implies A is a
translation. Setting x=0 in (13), we obtain mO - 00 =ma -Oa
for each me S then O = a hence [OJTQ'H [al) and consequent-
ly (s, 7 (C,¢)) is aleo] -transitive plane.

II, Conversely, suppose that o (S,T(C,®)) is alel-
transitive plane. First of all, evidently for a=0 mx - Ox =
= ma - 0a + 00 - m0O + mx - Ox for each m,x€ S. Thus suppose
a$0. For x= 0 we have ma - Oa=ma - Oa + 00 - mO + mx - Ox
for each me S. Thus suppose x s O. Now choose any element
kesN{0%} . By (12) there is x~ such that
kx - Ox = ka - Oa + 00 - kO + kx - Ox
Further let Uy be a translation for which (0,0)% ==
= (a, (-0a + 00 + 09)%"1) . Then
(0,0),(x, (-kx + ko + 09)¥ "N e T k,x0+ 091,

(0,0),(a, (-0a + 00 + 04)¥¢" "N € [ 0,00 + 0% 1,

(a (-0a + 00 + 0N ?=T) | (x] (-ox"+ ox - kx + k0 + 0%)¥Ne
€ [k,ka - 0a + 00 + 0%

(x, (~kx + k0 + 0¥) ¥4~ (x; (-ox"+ ox - kx + ko + 0¥ e
e [0,0x - kx + k0o + 09] .

Thus, (x, ( -kx + kO + 0'4)?'1)% = (x;7 (-0x"+ Ox - kx +

+ kO + 0")9-4) hence [x]c"- [x7). For mmoO is
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O= mx - Ox"’=ma - Oa + 00 - mO + mx - Ox.

Thus let be m€ SN4 0% . Then

(x, (-mx + mO + 09)9-7") ¢ [0,0x - mx + mO + 0%,

(x; (-0x"+ Ox - mx + mO + 0?)‘,-4)6 [0,0x - mx + mO + o%1n
A[x7]. Thus, (x, (-mO + mO + 0419~ % =

=(x; (-0x"+ Ox - mx + mO + 0")"'4) .

But TC(C,g) (mo0,0)=mo +0% =

=T (C,g) (mx, (-mx + mO + 09)4'4) and then it follows
necessarily T (¢’c_9) (m,a, (-0a + 00 + 0%)%9-1) =

=T (C,g) (mx,; (-0x™+ Ox - mx + mO + 0")"4),hence

ma - 0a + 00 + 0F = mx"- Ox”™+ Ox - mx + mO + 0¥ consequent-
ly mx - Ox’a ma - Oa + 00 - mO + mx - Ox

Thus Proposition 7 is proved.

Corollary 7.1.: Let(S,+,*) be a generalized Cartegian

group such that the condition (13) holds. Then the group
(s,+) 1tis Abelian.

Proof: The proof of the preceding corollary depends on
the obvious fact that the group of all translations of alel-
transitive plane is Abelian.

Proposition 8: Let C = (5,+,+) be a generalized
Cartesian group such that there exigts e € S where for each
X€S eexme .0, Further let ¥: S—p» S be a bijec-
tion such that 09 = 0 . Then the projective plane
mr (s, T(C,e®)) is a [0l -transitive plane if and only if
(14) ¥x,a€5 Ix€S YmeS mx - mx = ma - m0

Proof: I. First we note that by (12) for every ae S \de}
and for every be S there exists exactly one x € S such that

ax - ex = b - €0 it holds if and only if ax - eO= b - €O,
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ax = b. This implies that for each ae« S\{e} and for each
be S there exists exactly one x e S such that ax = b. Define
a mapping w,: (x,y) > (x;y) with x€S uniquely determin-
ed by (14). Clearly fUa is a bijective. Further it is obvious
that_ the image of the line [x] is the line [x"]l. Let us con-
sider a line [m,c]l. If (x,y)€[m,c], then
T(C,y) (mx,y)= mx + v% = c. Hence it is
T(C,®) (mx/y)=mx"+ v9 = ma - mo + mx + yI=ma - mo + ¢
or equivalently (x,y) € [Lm,ma - mO + c]. If x= x for some
x€&S then by (14) a= O, t, = id. This implies 4, is a tran-
slation. Setting x = O in (14), we have mO = ma for each me€ S
hence [OJ""‘ = Pa] and consequently o (s,T(C,e))
is a [eo)l-transitive plans.

II. Let or(S,T(C,9)) be a [co]-transitive plane. Set-
ting m=e in (13), we obtain ex - Ox“=ea - Oa + 00 - eO +
+ ex - Ox then -Ox"= -0a + 00 - Ox hence mx - Ox = mx - Oa +
+ 00 - Ox= ma -~ Oa + 00 - mO + mx - Ox for each m€ S and by
Corollary 7.1 mx = ma - mO + mx therefore mx - mx = ma - mO.

Theorem 1 and Proposition 7 now imply

Theorem 2: Let ( S,T) be a JTR. Then the projective pla-
ne wr(S,T) is a [0] -transitive plane if and only if
(z) C:=(S,+1,'1 ) i8 a generalized Cartesian group
(2%) there exists a bijection @: S—> S such that

=0, T=T(C,¢)
(22¢) VY x,aes 3x€S Ymes

me;x=, 0¢yx’=m 8= Oeja +)04 O =me;0 +me;x =) O0yx

T
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