

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

TERNARY RINGS ASSOCIATED TO TRANSLATION PLANE

Josef KLOUDA, Praha

Abstract: It is well known that an affine plane is a translation plane if and only if there exists a quasifield coordinatizing it. Simple condition for planary ternary ring with zero coordinatizing a translation plane is deduced by Klucký and Marková in [4]. We shall define a J-ternary ring or JTR to be a PTR that 306S such that T(a,0,c) = T(a,b,c) implies T(a,0,y) = T(a,b,y) \forall yeS
T(0,a,c) = T(b,a,c) implies T(0,a,y) = T(b,a,y) \forall yeS.
In [5] Martin defines an intermediate ternary ring (ITR). Strucurally, the JTR lie between the PTR and ITR. The purpose of this note is to deduce a necessary and sufficient condition that a given JTR coordinatizes a translation plane. This generalizes the main results of [4] and [5].

<u>Key words:</u> Planar ternary ring, translation plane, intermediate ternary ring, generalized Cartesian group.

AMS: 20N10 Ref. Z.: 2.722.9

A coordinatization of a projective plane: We shall give a coordinatization to a projective plane of order n. Let S be any set of cardinality n. Let ω be any element which is not in S and let O&S. We pick one point L and one line ℓ joining through L in the plane. For any M& ℓ denote by \widetilde{M} the set of all lines containing M. Let $m \mapsto (m)$ be a bijection of $S \cup \{\omega\}$ onto ℓ such that $[\infty] = \ell$. Let $x \mapsto [x]$ be a bijection of $S \cup \{\omega\}$ onto \widetilde{L} such that $[\infty] = \ell$. Let $y \mapsto (0,y)$ be a bijection of S onto $[01 \setminus \{L\}]$. We denote by $A \cup B$ (anb) the line join-

ing two distinct points A,B (the common point of two distinct lines). Let $\alpha_1, \alpha_2 \colon S \longrightarrow S$ be two mappings. Then to every point P off $\mathcal L$ we assign coordinates (x,y) if and only if $P = [x] \sqcap ((\alpha_1(x)) \sqcup (0,y))$. We shall now dualize the above construction in the following sense. Let $c \mapsto [0,c]$ be a bijection of S onto $(\widetilde{0}) \setminus \{\mathcal L\}$. Then to every line p off \widetilde{L} we assign coordinates [m,c] if and only if $p = (m) \sqcup ([\alpha_2(m)] \sqcap \Pi[0,c])$.

Planar ternary rings:

<u>Definition 1</u>: Let S be a set containing two different elements at least and let ternary operation T be given on it. An ordered pair (S,T) will be called a planar ternary ring or PTR if it holds:

- (1) $\forall a,b,c \in S \exists !x \in S$ T(a,b,x) = c
- (2) $\forall a,b,c,d \in S; x \in S$ T(x,a,b) = T(x,c,d)
- (3) $\forall a,b,c,d \in S$; $a \neq c \exists (x,y) \in S^2$ T(a,x,y) = b, T(c,x,y) = dAn intermediate ternary ring on $\exists TR (see [5],p.1187)$ is a PTR (S,T) such that (I₁) and (I₂) holds.
- (I₁) T(m,a,y) = T(m,b,y) = c, $a \neq b$ implies T(m,x,y) = c $\forall x \in S$
- (I_2) T(a,x,y) = T(b,x,y) = c, $a \neq b$ implies T(m,x,y) = c $\forall n \in S$

A J-ternary ring or JTR is a PTR (S,T) such that there exists $O \in S$ where

- (J_1) T(m,0,a) = T(m,x,a) implies T(m,0,y) = T(m,x,y) $\forall y \in S$
- (J_2) T(0,x,a) = T(m,x,a) implies T(0,x,y) = T(m,x,y) $\forall y \in S$

Let (S,T) be a PTR. Then (S,T) defines a projective plane π (S,T) as follows.

Points: $(x,y),(m),(\infty)$; $m,x,y\in S$, ∞ not in S

Lines: $[m,c]:= \{(x,y) \mid x,y \in S, T(m,x,y)=c\}$

[x]:= {(x,y)|yes}

 $[\infty] := \{(\infty)\} \cup \{(m) \mid m \in S\}$

In [2],[3](p. 114-115),[5](p. 1186) there was shown that $\pi(S,T)$ is a projective plane. Thus a solution in (3) is uni-.

Proposition 1: Let π be a projective plane. Then there exists a JTR (S,T) such that π (S,T) is isomorphic to π .

<u>Proof</u>: Let the projective plane π be coordinatized as above by elements from a set S. Define a ternary operation by T(m,x,y) = c if and only if (x,y) is on [m,c]. Then it is obvious that the (S,T) is a JTR. One has only to check (1),(2), $(3),(J_1),(J_2)$ in turn.

Remark: Let (S,T) be a JTR. Then there are mappings \ll_1 , \ll_2 : S \longrightarrow S such that $\forall x,y \in S$ $T(\ll_1(x),0,y) = T(\ll_1(x),x,y)$

 $\forall m, y \in S \quad T(0, \alpha_2(m), y) = T(m, \alpha_2(m), y)$

and such that for every point (x,y) and every line [m,c] in $\pi(S,T)$ is $(x,y) = [x] \pi((\infty_1(x)) u (0,y))$

[m,c] = (m) u ((a, (m)) n [o,c])

Proposition 2: Let (S,T) be an ITR. Then (S,T) is a JTR.

Proof: The proposition is a direct consequence of Theorem 6 in [5], p. 1188.

Vertically transitive planes: (S,t) is said to be the dual ternary system of PTR (S,T) if c = T(m,x,t(x,m,c))

 \forall m,c,xeS or equivalently y = t(x,m,T(m,x,y)) \forall m,x,yeS.

Proposition 3: The dual of a JTR is a JTR.

Proof: The proof is straightforward.

In the following we shall denote by j_a^1 the solution of the equation t(x,0,0)=t(x,a,a) for each $a \in S \setminus \{0\}$ and by j_a^2 the solution of the equation T(x,0,0)=T(x,a,a) for each $a \in S \setminus \{0\}$; additionally we define $j_0^1=j_0^2=0$. Thus for each $a \in S$ is $t(j_a^1,0,0)=t(j_a^1,a,a)$ and $T(j_a^2,0,0)=T(j_a^2,a,a)$. Now let us introduce in S two binary operations +1,+2 by virtue of

Remark: It can be easily verified that

(4)
$$C +_1 a = a +_1 0 = 0 +_2 a = a +_2 0 = a \quad \forall a \in S$$

(5)
$$\forall a,b \in S \exists ! x \in S$$
 $a +_1 x = b$
 $\forall a,b \in S \exists ! y \in S$ $a +_2 y = b$

<u>Definition 2</u>: Let (S,T) be a PTR. The projective plane $\pi(S,T)$ is said to be a vertically transitive plane (by [4], p. 620) if for each x,y,z \in S there exists a translation τ of the affine plane (S²,{[m,c]|m,c \in S} \sqcup {[x]|x \in S}) such that $(x,y)^{\tau} = (x,z)$.

Let (S,T) be a JTR and (S,t) its dual. By (1) $\phi_1 \colon y \longmapsto T(0,0,y) \ , \ \ \phi_2 \colon c \longmapsto t(0,0,c) \text{ are bijective mappings and } \phi_1 \phi_2 = \phi_2 \phi_1 = \mathrm{id}.$

Proposition 4: Let (S,T) be a JTR. Then the projective plane π (S,T) is a vertically transitive plane if and only if

(6) \forall m,c,x,y \in S (T m,x,y +₂ c) = T(m,x,y) +₁ (0⁹ +₂ c)⁹

Proof. I. Suppose first that (S,T) (6) holds. We shall see that (S,+₂) is a loop. By (4),(5) it is sufficient to show that \forall u,c \in S \exists !v \in S v +₂ c = u.

Let $a +_2 c = b +_2 c$ and let $m, x \in S$ such that $x \neq 0$, T(m,0,a) = T(m,x,b). Then $T(m,0,a +_2 c) = T(m,0,a) +_1 (0^{0} +_2 c)^{0} =$ $= T(m,x,b) +_1 (0^{0} +_2 c)^{0} = T(m,x,b +_2 c)$ and by (J_1) T(m,0,a) = T(m,x,a) = T(m,x,b) hence a = b. Now let $u \in S$.

Choose $m,x,y \in S$ such that $x \neq 0$. $T(m,0,u) = T(m,x,y +_2 c)$ and denote $(0,v) := [m,T(m,x,y)] \cap [0]$. Then there is T(m,0,v) = = T(m,x,y), $T(m,0,u) = T(m,x,y +_2 c) = T(m,x,y) +_1 (0^{0} +_2 c)^{0} =$ $= T(m,0,v) +_1 (0^{0} +_2 c)^{0} = T(m,0,v +_2 c)$ from here $v +_2 c =$ = u.

Thus, the map $\tau_c: S^2 \longrightarrow S^2$ defined by $(x,y)^{\tau_c}:=(x,y+_2c)$ is a translation. Since $(0,0)^{\tau_c}=(0,c)$, the $\pi(S,T)$ is a vertically transitive plane.

II. Let $\pi(S,T)$ be a vertically transitive plane. Then for each as there is a translation \mathcal{T}_{a} mapping (0,0) into (0,a). Then $(y,y)^{\mathcal{T}_{a}} = (y,y+_{2}a)$ for each yes hence $(0,y)^{\mathcal{T}_{a}} = (0,y+_{2}a)$ for each yes and $(x,y)^{\mathcal{T}_{a}} = (x,y+_{2}a)$ for each $x,y\in S$. It is obvious that $[0,0]^{\mathcal{T}_{a}} = [0,(0^{\frac{6}{2}}+_{2}a)^{\frac{6}{1}}]$ this implies $[m,c]^{\mathcal{T}_{a}} = [m,c+_{1}(0^{\frac{6}{2}}+_{2}a)^{\frac{6}{1}}]$. Hence, $(x,y)\in [m,T(m,x,y)]$ for each $m,x,y\in S$ from here $(x,y)^{\mathcal{T}_{a}}\in [m,T(m,x,y)]^{\mathcal{T}_{a}}$ then $(x,y+_{2}a)\in [m,T(m,x,y)+_{1}(0^{\frac{6}{2}}+_{2}a)^{\frac{6}{1}}]$ consequently $T(m,x,y+_{2}a) = T(m,x,y)+_{1}(0^{\frac{6}{2}}+_{2}a)^{\frac{6}{1}}$ for each $m,x,y,a\in S$.

Corollary 4.1: Let (S,T) be a JTR and let $\pi(S,T)$ be a vertically transitive plane. Then $(S,+_1)$, $(S,+_2)$ are groups and $(S,+_1)$ is isomorphic to $(S,+_2)$.

Proof: Consider translations ϕ : (0,0) → (0,a), δ : (0,0) → (0,b), τ : (0,0) → (0,c). Then (0,(a +₂ b) +₂ c) = (0,0)^{$(\phi\delta)\tau$} = (0,0)^{$\phi(\delta\tau)\tau$} = (0,0)^{$\phi(\delta\tau)\tau$} = (0,a +₂ (b +₂ c)) .

The second result follows from (6). In particular, for every a,beS $(a +_2 b)^{91} = T(0,0,a +_2 b) =$ $= T(0,0,a) +_1 (0^{92} +_2 b)^{91} = a^{91} +_1 (0^{92} +_2 b)^{91}. \text{ Since}$ for each y,a,beS $y +_2 (a +_2 b) = (y +_2 a) +_2 b, \text{ we have}$ $y^{91} +_1 (0^{92} +_2 (a +_1 b))^{91} = (y +_2 (a +_2 b))^{91} =$ $= (y +_2 a)^{91} +_1 (0^{92} +_2 b)^{91} = (y^{91} +_1 (0^{92} +_2 a)^{91}) +_1$ $+_1 (0^{92} +_2 b)^{91}.$ Setting $y = 0^{92}$, we have $(0^{92} +_2 (a +_1 b))^{91} = (0^{92} +_2 a)^{91} +_1 (0^{92} +_2 b)^{91}.$

Remark: The group of all translations of a vertically transitive plane $\pi(S,T)$ is Abelian if and only if $(S,+_1)$ is commutative.

Now let us introduce two binary operations ${}^{\bullet}_{1}$, ${}^{\bullet}_{2}$ by virtue of

Corollary 4.2: Let (S,T) be a JTR and let $\pi(S,T)$ be a vertically transitive plane. Then

(7) $\forall m, x, y \in S$ $T(m, x, y) = m \cdot_1 x +_1 (0^{92} +_2 y)^{94}$ $t(x, m, y) = x \cdot_2 m +_2 (0^{94} +_1 y)^{92}$ <u>Proof</u>: Let as set y = 0 in (6). Then $T(m,x,c) = m \cdot {}_{1}x + {}_{1} (0^{92} + {}_{2} c)^{91} \text{ for each } m,x,c \in S.$

Proposition 5: Let (S,T) be a JTR. The projective plane $\mathfrak{F}(S,T)$ is a vertically transitive plane if and only if

- (8) (S,+1), (S,+2) are groups
- (9) there exists an isomorphism $\varphi: (S,+_2) \longrightarrow (S,+_1)$ such that $\forall m,x,y \in S$ $T(m,x,y) = m \cdot_1 x +_1 y \cdot_2 x \cdot_3 x \cdot_4 x \cdot_5 x \cdot_$

<u>Proof</u>: I. Let (8),(9) hold for (S,T). Then for each m,x, y,ceS $T(m,x,y+_2c) = m \cdot_1 x +_1 (y+_2c)^{q} = m \cdot_1 x +_1 (y^{q} +_1 c^{q}) = (m \cdot_1 x +_1 y^{q}) +_1 c^{q} = T(m,x,y) +_1 c^{q}$ Setting m = x = 0, $y = 0^{p_2}$, we have $(0^{p_2} +_2 c)^{p_4} = 0 +_1 c^{q}$ thus $c^{q} = (0^{p_2} +_2 c)^{p_4}$ for each ceS therefore $T(m,x,y+_2c) = T(m,x,y) +_1 (0^{p_2} +_2 c)^{p_4}$ for each m,x,y,ceS.

II. The second part follows immediately from Corollary 4.1 and Corollary 4.2.

Corollary 5.1: Let (S,T) be a JTR such that T(0,0,y) = y for each $y \in S$. Then the projective plane $\pi(S,T)$ is a vertically transitive plane if and only if

- (i) (s,+1) is a group

II. If $\sigma(S,T)$ is a vertically transitive plane, then by Proposition 5 $(S,+_1)$ is a group and there exists an isomorphism $\varphi: (S,+_2) \longrightarrow (S,+_1)$ such that $T(m,x,y) = m \cdot_1 x +_1 y^{\varphi}$ for each $m,x,y \in S$. This yields then $y = T(0,0,y) = 0 +_1 y^{\varphi} = y^{\varphi}$ for each $y \in S$ hence $T(m,x,y) = m \cdot_1 x +_1 y$ for each $m,x,y \in S$.

Corollary 5.2: Let(S,T) be a JTR and (S,t) its dual. Let or (S.T) be a vertically transitive plane, then there exists an isomorphism $\varphi:(S,+_2) \longrightarrow (S,+_1)$ $\forall m, x, y \in S$ $T(m, x, y) = m \cdot_1 x +_1 y^{\varphi},$ $t(x, m, y) = x \cdot_2 m +_2 y^{\varphi-1}, m \cdot_1 x +_1 (x \cdot_2 m)^{\varphi} = 0$

<u>Proof</u>: Since it holds T(m,x,t(x,m,0)) = 0 for each $m,x \in$ ϵ S, we have $m_1 \times +_1 (x_2 \times)^9 = 0$. Since it holds T(m,x,t(x,y))(m,y) = y for each $(m,x,y) \in S$, we obtain (m,y) +1 (t(x,m,y)) = y thus $(t(x,m,y))^{g} = -\frac{1}{4} m_{1}x + \frac{1}{1}y = (x \cdot 2^{m})^{g} + \frac{1}{1}y$ from what you say $t(x,m,y) = x \cdot_{2^m} +_{2^y} \cdot_{2^{m-1}}$.

Definition 3: Let S be a set +,* two binary operations on S. (S,+, \bullet) will be called a generalized Cartesian group (see [4],p. 620) if S has two distinct elements at least and if it holds:

- (10) (S,+) is a group
- (11) ∀a,b,c∈S; a+b ∃!x∈S -xa + xb = c
- (12) ∀a,b,c ∈ S; a + b∃x ∈ S ax - bx = c

Propoposition 6: Let $C := (S, +, \cdot)$ be a generalized Cartesian group and let $\varphi: S \longrightarrow S$ be a bijection such that $0^{9} = 0$. If we define T(C, q), $(m, x, y) = m \cdot x + y^{9}$ for each m,x,yeS then $(S,T(C,oldsymbol{arphi}))$ is a JTR and π (S,T(C, φ)) is a vertically transitive plane.

Proof: The proof is straightforward. One has only to check (1),(2),(3),(J_1),(J_2),(8),(9) in turn.

Proposition 5 and Proposition 6 now imply the next Theorem 1: Let (S,T) be a JTR. Then the projective plane M(S,T) is a vertically transitive plane if and only if (i) $\mathbb{C}:=(s,+_1,\cdot_1)$ is a generalized Cartesian group

(ii) there exists a bijection $g: S \longrightarrow S$ such that $O^g = O$, T = T(C, g).

Translation planes: First we give some general remarks. Let us investigate a projective plane $\sigma = (P,L)$. Let us distinguish a line ℓ . Then by an affine plane $\sigma(\ell)$ we shall as usual mean the restriction of σ to the incidence structure $(P \setminus \ell, \{m \setminus (m \cap \ell) \mid m \in L \setminus \{\ell\}\})$. The points from $P \setminus \ell$ will be called proper, the points of ℓ improper or directions. A projective plane $\sigma = (P,L)$ is said to be an ℓ -transitive plane if the group of all translations of $\sigma(\ell)$ transitively operates on the set of all points of $\sigma(\ell)$. Let ℓ u, ℓ be affine lines of $\sigma(\ell)$ with different directions, then the projective plane σ is a ℓ -transitive plane if and only if the group of all translations of $\sigma(\ell)$ transitively operates on the lines ℓ u, ℓ .

<u>Proposition 7:</u> Let $C = (S, +, \cdot)$ be a generalized Cartesian group and $\varphi : S \longrightarrow S$ a bijection such that $O^{\mathscr{G}} = O$.

Then the projective plane $\pi(S,T(C,\varphi))$ is a $[\infty]$ -transitive plane if and only if

(13) $\forall x, a \in S \exists x \in S \forall m \in S$ mx' - Ox' = ma - Oa + OO - mO + mx - Ox

<u>Proof:</u> I. It suffices to prove that the group of all translations transitively operates on proper points of the line [0,0] In this case it suffices to show that for each line [a] there exists a translation τ such that $[0]^{\mathcal{X}} = [a]$. Define a mapping $\tau: (x,y) \longmapsto (x,(-0x+0x+y^g)^{g-1}$ with $x \in S$ uniquely determined by (13) (see (12)). Clearly τ_a is bijective. Further it is obvious that the image of

the line [x] is the line [x]. Let us consider a line [m,c]. If $(x,y) \in [m,c]$, then $T(C,\varphi) = (m,x,y) = mx + y^{\varphi} = c$. Hence it is $T(C,\varphi) = (m,x,(-0x^2 + 0x + y^{\varphi})^{\varphi-1}) = (mx^2 - 0x^2) + 0x + y^{\varphi} = (ma - 0a + 00 - m0 + mx - 0x) + 0x + y^{\varphi} = (ma - 0a + 00 - m0) + c$ or equivalently $(x,(-0x^2 + 0x + y^{\varphi})^{\varphi-1}) \in [m,ma - 0a + 00 - m0 + c]$. If $x = x^2$ for some $x \in S$, then necessarily a = 0 therefore $\tau_a = id$. This implies τ_a is a translation. Setting x = 0 in (13), we obtain $m0^2 - 00^2 = ma - 0a$ for each $m \in S$ then $0^2 = a$ hence $[0]^{\tau_a} = [a]$ and consequently $\pi(S,T(C,\varphi))$ is $a[\infty]$ -transitive plane.

II, Conversely, suppose that $\pi(S,T(C,\varphi))$ is a $[\infty]$ transitive plane. First of all, evidently for a = 0 mx - 0x = ma - Oa + OO - mO + mx - Ox for each m,x ∈ S. Thus suppose $a \neq 0$. For x = 0 we have ma - Oa = ma - Oa + OO - mO + mx - Ox for each $m \in S$. Thus suppose $x \neq 0$. Now choose any element $k \in S \setminus \{0\}$. By (12) there is x such that kx' - 0x' = ka - 0a + 00 - k0 + kx - 0xFurther let x_a be a translation for which $(0,0)^{x_a}$ = $= (a, (-0a + 00 + 0^{9})^{9-1})$. Then $(0,0),(x,(-kx+k0+09)^{g-1}) \in [k,k0+09],$ $(0,0),(a,(-0a+00+09)^{9-1}) \in [0,00+09],$ $(a (-0a + 00 + 09)^{g-1})$, $(x, (-0x + 0x - kx + k0 + 09)^{g-1}) \in$ € [k,ka - Oa + OO + O4] $(x, (-kx + k0 + 0^{q})^{q-1})$, $(x, (-0x + 0x - kx + k0 + 0^{q})^{q-1}) \in$ € [0,0x - kx + k0 + 09] . Thus, $(x, (-kx + k0 + 09)^{9-1})^{4a} = (x, (-0x + 0x - kx +$ $+ k0 + 0^{9})^{9-1}$ hence [x]² [x]. For m=0 is

O = mx' - 0x' = ma - 0a + 00 - m0 + mx - 0x.

Thus let be $m \in S \setminus \{0\}$. Then $(x, (-mx + m0 + 0^9)^{9-1}) \in [0, 0x - mx + m0 + 0^9]$, $(x, (-0x' + 0x - mx + m0 + 0^9)^{9-1}) \in [0, 0x - mx + m0 + 0^9]$, $(x, (-0x' + 0x - mx + m0 + 0^9)^{9-1}) \in [0, 0x - mx + m0 + 0^9]$, $(x, (-0x' + 0x - mx + m0 + 0^9)^{9-1}) \in [0, 0x - mx + m0 + 0^9]$,

But $T(C, g) (m, 0, 0) = m0 + 0^9 = (x, (-0x' + 0x - mx + m0 + 0^9)^{9-1}) = (x, (-0x') (m, 0, 0) = m0 + 0^9)^{9-1})$, and then it follows necessarily $T(C, g) (m, x, (-0x' + 0x - mx + m0 + 0^9)^{9-1})$, hence $ma - 0a + 00 + 0^9 = mx' - 0x' + 0x - mx + m0 + 0^9)^{9-1}$, hence $ma - 0a + 00 + 0^9 = mx' - 0x' + 0x - mx + m0 + 0^9$ consequently mx' - 0x' = ma - 0a + 00 - m0 + mx - 0xThus Proposition 7 is proved.

Corollary 7.1.: Let $(S,+,\bullet)$ be a generalized Cartesian group such that the condition (13) holds. Then the group (S,+) is Abelian.

<u>Proof</u>: The proof of the preceding corollary depends on the obvious fact that the group of all translations of a $[\infty]$ -transitive plane is Abelian.

Proposition 8: Let $C = (S,+,\cdot)$ be a generalized Cartesian group such that there exists $e \in S$ where for each $x \in S$ $e \cdot x = e \cdot 0$. Further let $\varphi \colon S \longrightarrow S$ be a bijection such that $O^{\varphi} = O$. Then the projective plane $\pi(S,T(C,\varphi))$ is a $[\infty]$ -transitive plane if and only if (14) $\forall x,a \in S \exists x \in S \forall m \in S mx - mx = ma - mO$

<u>Proof:</u> I. First we note that by (12) for every $a \in S \setminus \{e\}$ and for every $b \in S$ there exists exactly one $x \in S$ such that ax - ex = b - e0 it holds if and only if ax - e0 = b - e0,

ax = b. This implies that for each a \in S\{e} and for each be S there exists exactly one x \in S such that ax = b. Define a mapping \mathcal{T}_a : $(x,y) \mapsto (x,y)$ with x \in S uniquely determined by (14). Clearly \mathcal{T}_a is a bijective. Further it is obvious that the image of the line [x] is the line [x]. Let us consider a line [m,c]. If $(x,y) \in [m,c]$, then

T (C,φ) (m,x,y) = mx + y = c. Hence it is

T (C,φ) (m,x,y) = mx + y = c. Hence it is

T (C,φ) (m,x,y) = mx + y = ma - m0 + mx + y = ma - m0 + c or equivalently $(x,y) \in [m,ma - m0 + c]$. If x = x for some x \in S then by (14) a = 0, a = a id. This implies a = a is a translation. Setting a = a in (14), we have a = a for each $a \in S$ hence a = a and consequently a = a a = a and consequently a = a a = a and consequently a = a a = a a = a a = a and consequently a = a

II. Let $\pi(S,T(\mathbb{C},\mathcal{G}))$ be a $[\infty]$ -transitive plane. Setting m=e in (13), we obtain ex-0x=ea-0a+00-e0+ + ex-0x then -0x=-0a+00-0x hence mx-0x=mx-0a+ + ex-0x=ma-0a+00-m0+mx-0x for each meS and by Corollary 7.1 mx=ma-m0+mx therefore mx-mx=ma-m0.

Theorem 1 and Proposition 7 now imply

Theorem 2: Let (S,T) be a JTR. Then the projective plane π (S,T) is a $[\infty]$ -transitive plane if and only if (i) $\mathbb{C} := (S,+_1,\cdot_1)$ is a generalized Cartesian group

(ii) there exists a bijection $\varphi: S \longrightarrow S$ such that $O^{\varphi} = O, T = T (C, \varphi)$

(iii) $\forall x, a \in S \exists x \in S \forall m \in S$ $m^{\bullet}_{1}x -_{1} \circ _{1}x = m^{\bullet}_{1}a -_{1} \circ _{1}a +_{1} \circ _{1}o -_{1}m^{\bullet}_{1}\circ +_{1}m^{\bullet}_{1}x -_{1} \circ _{1}x$

•

References

- [1] HALL M.: Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
- [2] HAVEL V.: A general coordinatization principle for projective planes with comparison of Hall and Hughes frames and with examples of generalized oval frames (to appear in Czech. Math. Journal).
- [3] HUGHES D.R. and PIPER F.C.: Projective planes, Springer Verlag New York-Heidelberg-Berlin 1973.
- [4] KLUCKÝ D. and MARKOVÁ L.: Ternary rings with zero associated to translation planes, Czech. Math. Journal 23 (98) (1973), 617-628.
- [5] MARTIN G.E.: Projective planes and isotopic ternary rings, Amer. Math. Monthly 74 (1967) II, 1185-1195.

Matematický ústav Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 20.10. 1976)

