

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

CONVERGENCE OF CONDITIONAL EXPECTATIONS J. ŠTĚPÁN 1), Praha

Abstract: A simple lemma in which uniform integrability together with convergence in distribution implies convergence in probability is presented. The result provides a generalization to that of D. Gilat (1971) and Stěpán (1971).

Key words and phrases: Bayes estimator, uniform integrability, convergence in distribution, convergence in probability.

AMS: Primary 28A2O

Ref. Z.: 7.518.115

Secondary 62F15

The purpose of this note is to present a result in which uniform integrability together with convergence in distribution implies convergence in probability. The result, which provides a generalization to that of D. Gilat (1971), is designed to show that the sequence of Bayes estimators of a real valued function is consistent with respect to L_r -convergence ($r \ge 1$) if and only if it is consistent with respect to convergence in distribution. Our main result is

Lemma. Let $\{x_n\}$, $\{y_n\}$ be sequences of integrable random variables such that x_n, y_n are defined on a probability

Part of this work was performed while the author was visiting the Mathematical Institute of the University of Aarhus, Danmark.

space $(\Omega_n, \mathcal{A}_n, P_n)$. Suppose that $\mathbb{E}[X_n \mid \varepsilon_n] \leq Y_n^{-1}$ where $\varepsilon_n \subset \mathcal{A}_n$, $n \geq 1$, are \mathscr{C} -algebras and assume the sequences $\{X_n^{-1}\}$, $\{Y_n^{-1}\}$ to be uniformly integrable. If X_n and Y_n have the same limiting distribution then $X_n - Y_n \xrightarrow{f_n} 0$.

Moreover, if

(1) $\mathbb{E}[X_n \mid \varepsilon_n] = Y_n$, $n \ge 1$ and $|X_n|^r$ is uniformly integrable for some $r \ge 1$,

so is $|Y_n|^r$; hence this lemma implies $E | X_n - Y_n|^r \longrightarrow 0$ as $n \longrightarrow \infty$.

<u>Proof of Lemma</u>. First $^{3)}$ consider the stronger set of assumptions (1) putting there r=1. Fix a positive integer k and define Φ by

$$\Phi(t) = t^{2} \qquad 0 \le t \le k$$

$$= 2kt - k^{2} \qquad t > k$$

$$= \Phi(-t) \qquad t < 0.$$

 Φ is continuous, linear for $\mid t\mid \geq k$. Hence the uniform integrability argument (Loeve (1963), page 183) applies to conclude from our assumptions that E Φ (Xn) - E Φ (Yn) \longrightarrow 0 as n \longrightarrow ∞ .

¹⁾ Equalities and inequalities between random variables are meant in the almost sure sense.

²⁾ We write $X_n - Y_n \xrightarrow{r} 0$ and mean that $X_n - Y_n \longrightarrow 0$ in probability as $n \longrightarrow \infty$, i.e. $P_n [|X_n - Y_n| \ge \varepsilon] \longrightarrow 0$ as $n \longrightarrow \infty$ for all $\varepsilon > 0$.

The method employed in the first part of this proof is due to the referee of the present note. The author's original proof was much more complicated.

Further define Y by

$$\Psi(x,t) = 2xt - x^{2} \qquad |x| \le k, t \in \mathbb{R}^{1}$$

$$= 2kt - k^{2} \qquad x > k, t \in \mathbb{R}^{1}$$

$$= -2kt - k^{2} \qquad x < -k, t \in \mathbb{R}^{1};$$

i.e. $t \longrightarrow \Psi(x,t)$ is the unique linear function which is $\not \subseteq \Phi$ and equal Φ at the point x. Moreover, for any given $\epsilon > 0$ there is some $\sigma > 0$ such that

 $\tilde{\Phi}\left(t\right)-\Psi\left(x,t\right)\geq\sigma^{\prime}\quad\text{if }|x-t|\geq\epsilon\quad\text{and }|x|\leq k-1.$ Since

$$\mathbb{E}\left[\Psi(Y_n, X_n) \mid \varepsilon_n \mid \Phi(Y_n), \quad n \geq 1\right]$$

we arrive at

$$\begin{split} & [\, \operatorname{E} \varphi(\operatorname{X}_n) \, - \, \operatorname{E} \varphi(\operatorname{Y}_n) \,] \, \geq \, \sigma \operatorname{P}_n \, [\, | \operatorname{X}_n \, - \, \operatorname{Y}_n \,| \, \geq \, \varepsilon \, \, , | \operatorname{Y}_n \,| \, \leq \, k \, - \, 1 \,] \, \longrightarrow \, 0 \\ & \text{as } n \longrightarrow \infty \, \text{. Letting } k \longrightarrow \infty \quad \text{it is easy to argue from the} \\ & \text{tightness of the sequence } \, \{ \operatorname{Y}_n \} \quad \text{that } \operatorname{X}_n - \operatorname{Y}_n \xrightarrow{\uparrow \nu} 0 \, . \end{split}$$

Finally, consider $\{X_n\}$, $\{Y_n\}$ satisfying the hypotheses of Lemma. Take c>0 and put

$$\Delta(t) = t t \leq c$$

$$= c t > c.$$

The conditional form of Jensen's inequality (Loeve (1963), page 348) provides the argument for the inequality

$$Z_n = \mathbb{E} \left[\Delta (X_n) \mid \in_n \right] \leq \Delta (Y_n) \qquad n \geq 1$$
 since Δ is continuous concave and nondecreasing. From the uniform integrability of $\{X_n^-\}$, $\{Y_n^-\}$ it follows that
$$\mathbb{E} \Delta (X_n) - \mathbb{E} \Delta (Y_n) \longrightarrow 0 \quad \text{as } n \longrightarrow \infty \quad \text{Consequently}$$

$$Z_n - \Delta (Y_n) \xrightarrow{\uparrow \nu} 0.$$

To prove that $\Delta(X_n) - \Delta(Y_n) \xrightarrow{\uparrow \iota} 0$, which is obviously sufficient for our purposes, we simply apply the proven part

of this lemma to the sequences $\{Z_n\}$, $\{\Delta(X_n)\}$ ($\Delta(X_n)$) is uniformly integrable) and combine the result with (2).

The following example shows that our lemma is not necessarily true if its uniform integrability assumptions are not satisfied. Let the (Ω, \mathcal{A}, P) be the closed unit interval with Lebesgue measure. Denote by I_A the indicator of a set A and put for $n \geq 1$

$$\begin{split} \mathtt{A}_{\mathbf{n}} &= [\mathtt{0}, \frac{1}{2n}), \; \mathtt{B}_{\mathbf{n}} = [\frac{1}{2n}, \frac{1}{2}), \; \mathtt{C}_{\mathbf{n}} = [\frac{1}{2}, 1 - \frac{1}{2n}), \\ & \mathtt{D}_{\mathbf{n}} = [1 - \frac{1}{2n}, 1], \\ \mathtt{X}_{\mathbf{n}} &= -\mathtt{n} \cdot \mathtt{I}_{\mathsf{A}_{\mathbf{n}}} + \mathtt{I}_{\mathsf{C}_{\mathbf{n}}} + \mathtt{n} \cdot \mathtt{I}_{\mathsf{D}_{\mathbf{n}}}, \quad \boldsymbol{\varepsilon}_{\mathbf{n}} = \mathfrak{G}(\mathtt{A}_{\mathbf{n}} \cup \mathtt{C}_{\mathbf{n}}, \; \mathtt{B}_{\mathbf{n}} \cup \mathtt{D}_{\mathbf{n}}), \\ \mathtt{Y}_{\mathbf{n}} &= \mathtt{E}[\mathtt{X}_{\mathbf{n}} \setminus \boldsymbol{\varepsilon}_{\mathbf{n}}]. \end{split}$$

Simple computations show that the sequences $\mathbf{X_n}, \mathbf{Y_n}$ have the same limiting distribution but the sequence $\mathbf{X_n} - \mathbf{Y_n}$ fails to converge in probability to zero.

A pair of random variables is said to be fair (subfair) if E[X | Y] = Y ($E[X | Y] \neq Y$). D. Gilat (1971) introduced this concept and proved that if (Y,X) is a subfair pair of integrable random variables then Y and X have the same distribution if and only if X = Y. Obviously, our Lemma provides a generalization to this result.

As a corollary we obtain the following comparison of $\mathbf{L}_{\mathbf{r}^{\mp}}\mathbf{convergence}$ and convergence in distribution:

Finally, consider a parameter-space Θ which is endowed with a priori probability distribution ω defined on a $\mathfrak C$ -algebra $\mathfrak B$ of its subsets and have a sequence of statistical problems where the n-th term of the sequence consists of a measurable sample space $(Z_n, \, \varepsilon_n)$ and a family of probability measures $\{P_{n\Theta}, \, \Theta \in \Theta \mid \text{ which are defined on } \mathfrak E_n$. Moreover, suppose that the mapping $P_{n\Theta}$ (E): $\Theta \longrightarrow \mathbb R^1$ is measurable for $\mathbb E \in \mathfrak E_n$.

The objects under consideration determine a sequence of probability spaces $(\Omega_n, \mathcal{A}_n, P_n)$, $n \ge 1$ where

$$\Omega_n = Z_n \times \theta$$
 , $A_n = \epsilon_n \times B$ and
$$P_n(E \times B) = \int_{\mathbb{R}} P_{n\theta} (E) \, \mu(d\theta) \qquad \qquad E \in \epsilon_n, B \in B \ .$$

Considering $f: \Theta \longrightarrow \mathbb{R}^1$, a measurable and integrable function, the sequence of conditional expectations

$$b_n(f) = \mathbb{E}_{p_n}[f \mid \epsilon_n]$$
 $n \ge 1$

is called the Bayes estimator of f. (By $\,\varepsilon_{\,n}$ we mean the natural extension of the original $\,\delta$ -algebra such that $\,\varepsilon_{\,n}\,c\,$ $\,c\,\,\mathcal{A}_{\,n^{\,\bullet}}$)

Thus, we may apply the assertion of Lemma to get <u>Corollary 2</u>. Consider $r \ge 1$ and a function $f \colon \theta \longrightarrow \mathbb{R}^1$ such that $|f|^r$ is integrable. Then the Bayes estimator converges to f in distribution if and only if

$$\underset{m \to \infty}{\lim} \ \mathbb{E}_{P_n} \big| \ b_n(f) - f \big|^r = 0.$$

References

LOEVE, M. (1963). Probability Theory. Van Nostrand, Princeton.

GILAT, D. (1971). Conditions under which two random variables are equal almost surely and a simple proof of a theorem of Chung and Fuchs, Ann. Math. Statist. 42, 1947-1955.

STEPÁN, J. (1971). Weak convergence of Bayes estimators. To appear in Trans. of 6-th Prague Conference on Inf.
Theory.

Matematicko-fyzikální fakulta Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 21.12.1976)