

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

THE CATEGORIES OF FREE METABELIAN GROUPS AND LIE ALGEBRAS

V.A. ARTAMONOV, Moscow

Abstract: Homomorphisms of free metabelian A_qA -groups, $q \ge 0$, and free metabelian Lie algebras over a commutative associative unital ground ring k are studied. It is proved that the group of automorphisms of a free metabelian Lie algebra L of rank 2, identical on L/L is isomorphic to the additive group of the polynomial group k [X,Y]. Further; If f: $L_1 \longrightarrow L_2$ is an epimorphism of free A_qA -groups or metabelian Lie algebras over a ring $k = k_0$ [X_1, \ldots, X_r , X_{r+1}^{t+1} , ..., X_s^{t+1}], where k_0 is a Dedekind ring, $rkL_1 = n$, $rkL_2 = d$, then L_1 possesses a free generating set z_1, \ldots, z_n such that $f(z_1), \ldots$..., $f(z_d)$ is a free generating set for L_2 and z_{d+1}, \ldots, z_n generate Ker f as a normal subgroup or an ideal.

AMS: 17B30, 20E10 Ref. Z.: 2.723.533,2.722.32

 $\underline{\text{Key words}}\colon$ Free metabelian group, free metabelian Lie algebra, automorphism, free generating set.

The present paper concerns homomorphisms of free metabelian A_qA -groups, $q \ge 0$, and free metabelian Lie algebras over a commutative associative unital ground ring k. In § 2 we show that the group of automorphisms of a free metabelian Lie algebra L of rank 2, identical on L/L' (IA-automorphisms in terms of [1]) is isomorphic to the additive group of the polynomial group k [X,Y]. For comparison the similar group for a free metabelian A^2 -group consists of inner automorphisms

(see [1]).

In § 3 and 4 we show that if f: $L_1 \longrightarrow L_2$ is an epimorphism of free A_qA -groups or metabelian Lie algebras over a ring $k = k_0 [X_1, \ldots, X_r, X_{r+1}^{\pm 1}, \ldots, X_s^{\pm 1}]$, where k_0 is a Dedekind ring, $rkL_1 = n$, $rkL_2 = d$, then L_1 possesses a free generating set z_1, \ldots, z_n such that $f(z_1), \ldots, f(z_d)$ is a free generating set for L_2 and z_{d+1}, \ldots, z_n generate Ker f as a normal subgroup or an ideal. In particular, let P be a retract of a free metabelian A_qA -group or Lie k-algebra L with a projection f: $L \longrightarrow P$, k as above with k_0 a principal ideal ring. Then by [2] P is free and L possesses a free generating set z_1, \ldots, z_n such that $f(z_1) \equiv z_1$ mod Kerf in addition to the properties mentioned above.

A consideration of metabelian Lie algebras is motivated by the following reason. If k is a field, chark = 0, then any proper subvariety of metabelian Lie algebras is nilpotent (see [3]). Moreover, this variety is semisimple, [4]. By [5] if L is a free nilpotent algebra over a rield with a retract P then P is a free factor of L. A trivial example in § 3 shows that this does not hold for metabelian Lie algebras.

It is worthy of mention that the similar results for absolutely free linear algebras were exhibited in [6].

§ 1. Homomorphisms of free metabelian Lie algebras. First we need a representation of free metabelian Lie algebras of finite rank n. Let $K = k [X_1, \ldots, X_n]$ be a polynomial ring with the augmentation ideal $\mathcal{M} = (X_1, \ldots, X_n)$ and M a free

K-module with the base e_1, \dots, e_n . Define an epimorphism of K-modules

$$\ell: M \longrightarrow m$$
 , $\ell(e_i) = X_i$.

Then M can be regarded as a k-algebra with the multiplication

(1)
$$ab = \mathcal{L}(b)a - \mathcal{L}(a)b$$
, a , $b \in M$.

A direct calculation shows that M is a metabelian Lie algebra. Put

$$L = \{a \in M \mid \mathcal{L}(a) = \sum_{i=1}^{m} \alpha_{i} X_{i}, \alpha_{i} \in k \}$$

Theorem 1. L is a subalgebra in M and a free metabelian Lie algebra with the base e_1, \dots, e_n .

The proof under assumption that k is a field was given in [7]. But this restriction on k was not used in the proof and is not necessary.

Corollary. L' = Kerl.

Proof. If a, b \in L, then by (1) $\mathcal{L}(ab) = 0$. Conversely, if

$$n = \sum \infty_i e_i \mod L', \infty_i \in k,$$

and $\mathcal{L}(a) = 0$, then $\mathcal{L}(a) = \sum_{i=1}^{n} x_{i}$ implies $x_{i} = \dots = x_{n} = 0$ and $a \in L'$.

Consider now two free metabelian Lie algebras L_1 , L_2 over k with the bases e_1,\dots,e_n and u_1,\dots,u_d . Let

$$K_1 = k [X_1, \dots, X_n], K_2 = k [Y_1, \dots, Y_d]$$

and M_i , K_i , M_i , ℓ_i be associated with L_i , i = 1,2, by Theo-

rem 1. Given any homomorphism $\varphi: K_1 \longrightarrow K_2$ of k-algebras such that

(2)
$$\varphi(x_i) = \sum \varphi_{i,j} x_j$$
, $\varphi_{i,j} \in k$,

consider a g-semilinear homomorphism h: $\mathrm{M}_1 \longrightarrow \mathrm{M}_2$ of modules making commutative the following diagram

<u>Proposition 1.</u> h is a homomorphism of Lie algebras, defined by (1), and $h(L_1) \subseteq L_2$.

<u>Proof.</u> If $a,b \in M_1$ then by (1) and (2')

$$\begin{split} h(ab) &= h(\mathcal{L}_{1}(b)a - \mathcal{L}_{1}(a)b) = \varphi(\mathcal{L}_{1}(b))h(a) - \varphi(\mathcal{L}_{1}(a))h(b) = \\ &= \mathcal{L}_{2}(h(b))h(a) - \mathcal{L}_{2}(h(a))h(b) = h(a)h(b). \end{split}$$

Also by (2) and Theorem 1 we have $h(L_1) \subseteq L_2$.

Now we show that every homomorphism $f\colon L_1\longrightarrow L_2$ can be extended to a unique semilinear homomorphism (h,φ) with the properties (2),(2'). In order to do this define $\varphi\colon K_1\longrightarrow K_2$ as $\varphi(X_1)=\mathcal{L}_2(f(e_1))$. Note that by (2') and Theorem 1 this is the unique way of defining φ . Define also h: $M_1\longrightarrow M_2$ by $h(e_1)=f(e_1)$.

<u>Proposition 2</u>. If $a \in L_1$, then f(a) = h(a).

<u>Proof.</u> The case $a = e_j$ follows from definition. If $f(a_j) = h(a_j)$, then $f(\sum w_j a_j) = h(\sum w_j a_j)$. Now let f(a) = h(a), f(b) = h(b). In this case

$$f(ab) = f(a)f(b) = \mathcal{L}_{2}(f(b))f(a) - \mathcal{L}_{2}(f(a))f(b) =$$

$$= \mathcal{L}_{2}(h(b))h(a) - \mathcal{L}_{2}(h(a))h(b) = h(a)h(b) = h(ab)$$

by Proposition 1.

Thus we have proved

Theorem 2. Each semilinear map (h, φ) with (2), (2') defines a homomorphism $f \colon L_1 \longrightarrow L_2$ of free metabelian Lie algebras and conversely every homomorphism $f \colon L_1 \longrightarrow L_2$ of Lie algebras has a unique representation by a semilinear morphism of modules.

By uniqueness the correspondence between morphisms of Lie algebras and semilinear morphisms is functorial. Starting from now we identify homomorphism $f\colon L_1 \longrightarrow L_2$ with its semilinear representation (h,φ) .

§ 2. Automorphisms of free metabelian Lie algebras. In this part we consider the case $L_1 = L_2 = L$ and $f = (h, \varphi) \in \mathbb{R}$ and $f = (h, \varphi) \in \mathbb{R}$

(3)
$$X_{i} = \mathcal{L}(e_{1}) = \mathcal{L}(h(e_{i})) = \sum_{j=1}^{m} X_{j}h_{ji}$$

This implies $h_{ij} = \sigma_{ij} + g_{ij}$, where $\sum_{i=1}^{m} X_i g_{ij} = 0$, j = 1,......,n. Hence,

$$h = E + T \in SL(n,K), T = (g_{i,j})$$

In particular for n = 2 we have

$$T = \begin{pmatrix} x_2^{t_1} & x_2^{t_2} \\ -x_1^{t_1} & -x_1^{t_2} \end{pmatrix} \quad t_1, t_2 \in k \ [x_1, x_2]$$

and

 $1 = \det(E + T) = (1 + X_2t_1)(1 - X_1t_2) + X_1X_2t_1t_2 = 1 + X_2t_1 - X_1t_2, \text{ that is } t_1 = X_1t, t_2 = X_2t \text{ Hence,}$

$$T = \begin{pmatrix} x_1 x_2 t & x_2^2 t \\ -x_1^2 t & -x_1 x_2 t \end{pmatrix} = T(t)$$

Note that T(t)T(t') = 0 and thus for E + T(t), $E + T(t') \in G$ we have

$$(E + T(t))(E + T(t')) = E + T(t'' + t')$$

Thus, we have proved

Theorem 3. If L is a free metabelian Lie algebra of rank 2, then Aut L is a semidirect product of GL(2,k) and a group G of IA-automorphisms isomorphic to the additive group of $k[X_1,X_2]$.

§ 3. Epimorphisms of free metabelian Lie algebras. In this part we assume that for all s, r the group $GL(s,k \mid X_1, \ldots, X_r]$) acts transitively on unimodular rows (see [8]). This is equivalent to the following fact: if $R = k \mid X_1, \ldots, X_s \mid$ and M is R-module such that $R^S \simeq M \oplus R^P$ then $M \simeq R^{S-P}$. The fundamental result of [8] shows that this condition is satisfied when $k = k_0 \mid X_1, \ldots, Y_n, \mid Z_1, \ldots, Z_r \mid 1$, where k_0 is a Dedekind

ring.

Let $L_1, K_1, M_1, M_1, \mathcal{L}_1, i = 1, 2$, be as in § 1 and f: : $L_1 \longrightarrow L_2$ an epimorphism, $f = (h, \varphi)$, $\operatorname{rk} L_1 = n$, $\operatorname{rk} L_2 = d$. Since L_2 is projective it can be regarded as a retract of L_1 , that is L_2 is a subalgebra in L_1 and there is a projection f: $L_1 \longrightarrow L_2$ identical on L_2 , i.e. $f^2 = f$. By (2), Theorem 2 and the remark made after this theorem φ is an idempotent endomorphism of $K_1 = k[X_1, \ldots, X_n]$, where $\varphi(X_1) = \sum \varphi_{1j}X_j$, $\varphi_{1j} \in k$. Thus φ is an idempotent endomorphism of a free k-module $kX_1 + \ldots + kX_n \cong k^n$ and $\lim \varphi \cong k^d$ since L_2 is free. By the remark made above $\ker \varphi \cong k^{n-d}$ and thus

$$K = k [X_1, ..., X_n] = k [Y_1, ..., Y_n]$$

for some Y_1, \dots, Y_n , where

(4)
$$\varphi(Y_1) = \begin{cases} Y_1, & i = 1,...,d; \\ 0, & i = d+1,...,n. \end{cases}$$

Let $\alpha = (\alpha_{ij}) \in GL(n,k) \subseteq Aut \ K \ and \ Y_i = \alpha(X_i) = \begin{cases} \alpha_{ij} & \alpha_$

$$\mathcal{L}_1(g(e_i)) = \mathbf{\Xi} \propto_{i,j} \mathbf{X}_j = \mathbf{Y}_i = \infty(\mathbf{X}_i) = \infty(\mathcal{L}_1(e_i)).$$

Thus without loss of generality we can suppose from the very beginning that in (4)

(4')
$$\varphi(X_{\underline{i}}) = \begin{cases} X_{\underline{i}}, & i = 1, ..., d; \\ 0, & i = d + 1, ..., n. \end{cases}$$

Let \mathcal{M}_2 be the augmentation ideal $(x_1, \dots, x_d) \triangleleft k [x_1, \dots, x_n] \triangleleft k [x_1, \dots, x_n]$, ..., $x_d \mid x_1 \mid x_1 \mid x_n \mid x_n$

Note that by (4') $JM_1 \subseteq Ker h$ and hence (5) induces a commutative diagram

Now M_1 is a free $K_2 = k [X_1, \dots, X_d]$ -module with the base $e_1' = e_1 + JM_1$, $l \le i \le n$, and by (5') h' is an epimorphism of free K_2 -modules. As we have already noticed Ker h is a free K_2 -module of rank n - d. Now we can identify M_1 with $\sum_{k=1}^{\infty} K_2 e_i \subseteq M_1$. Thus we choose in M_1 a new base $w_1, \dots, w_n \in \sum_{k=1}^{\infty} K_2 e_i$ such that $h(w_1), \dots, h(w_d)$ is a base for M_2 and $w_{d+1}, \dots, w_n \in Ker$ h. Moreover, $Ker \varphi = J$. Since $X_1 + M_1^2$, $i = 1, \dots, n$, is a base of a free k-module M_1/M_1^2 by (4') we can also assume that

$$H = \begin{pmatrix} \ell_1(w_1) \\ \vdots \\ \ell_n(w_n) \end{pmatrix} \equiv X \mod J, \text{ where } X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

for we can always suppose that $\mathcal{L}_2(h(w_i)) = X_i$, i = 1, ..., d, and $w_j \in \text{Ker } h \text{ implies } \mathcal{L}_1(w_j) \in J$. Thus H is \mathcal{M}_1 -modular (see

[2],[7]).

Consider now a subgroup $D \subseteq GL(n,K_1)$ generated by $GL(n,K_1,J)$ (see [9]) and all matrices

$$\begin{pmatrix} A & U \\ 0 & B \end{pmatrix}$$
, $A \in GL(d,K_1)$, $B \in GL(n-d,K_1)$.

<u>Proposition 3.</u> There exists $C \in D$ such that CH = X. The proof in a more general situation will be given in Proposition 4.

Since $w_{d+1},...,w_n \in \text{Kerh}$, $JM_1 \subseteq \text{Kerh}$ by Proposition 3 for a new base $u_i = Cw_i$, i = 1,...,n in M_1 we have

 $\mathcal{L}_1(u_1) = X_1$, i = 1,...,n; $u_j \in \text{Kerh}$, j = d + 1,...,n, and $h(u_1),...,h(u_d)$ is a base for M_2 . Thus we have proved

Theorem 4. Let k be a ring such that $GL(s,k[X_1,...,X_r])$ acts transitively on sets of unimodular columns for all s, r. If f: $L_1 \longrightarrow L_2$ is an epimorphism of free metabelian Lie algebras over k, $rkL_1 = n$, $rkL_2 = d$, then L_1 possesses a free base $u_1,...,u_n$ such that $f(u_1),...,f(u_d)$ is a base for L_2 and $u_{d+1},...,u_n$ generate Kerf as an ideal. In particular, the theorem holds for $k = k_0 [Y_1,...,Y_c,Z_1^{\pm 1},...,Z_p^{\pm 1}]$, where k_0 is a Dedekind ring (see [8]).

<u>Corollary.</u> Let k be as above with k_0 a principal ideal ring, L a free metabelian Lie algebra over k, rkL = n, and P a retract of L, rkP = d (see [2],[7]). If f: L \longrightarrow P is a projection, then L possesses a free base u_1, \ldots, u_n with the properties of Theorem 4 such that in addition $f(u_i) \equiv u_i \mod Kerf$, $i = 1, \ldots, d$.

Proof. By [2] P is free and f(a) - acKerf for all acL

since $f^2 = f$.

Now we need to prove Proposition 3. Following [2] consider a more general situation: let $A_0 \subset A_1 \subset \ldots \subset A_n \subset \ldots$ be a chain of commutative rings, le A_0 and for all i

- 1) A_i is a retract of A_{i+1} with kernel (X_{i+1}) ;
- each X_i is not a zero divizor;
- 3) if $m_1 = (x_1, ..., x_i) < A_1$, then m_1/m_1^2 is a free A_0 -module of rank i;
- 4) $GL(t,A_i)$ acts transitively on sets of unimodular columns for all $t \ge i$.

<u>Proposition 4.</u> Let H be a column of length $t \ge n$, that is an element of a free A_n -module A_n^t , $J = (X_{d+1}, \dots, X_n) \lhd A_n$ and

$$H = X = \begin{pmatrix} X_1 \\ X_n \\ 0 \\ 0 \end{pmatrix} \mod J$$

If H is m_n -modular then there exists $C \in D$ (definition D as in Proposition 3) such that CH = X.

<u>Proof.</u> The case d=n is trivial. Suppose now that for n-1 the affirmation has been proved. By induction (see [2]) for n we can suppose that $H\equiv X \mod X_n$. Again by [2] there exists $C_1\in D$ such that $H_1=C_1H\cong X \mod X_n^3$ and thus for some unimodular $Q\in A_n^t$

the product

$$(6') Q*H_1 = X_n$$

By (6) and 4) as it is well known there exists $C_2 \in GL(t, A_n, X_n)$ with Q as the n-th row. Hence by (6') the n-th element in the column $H_2 = C_2H_1$ is X_n and still $H_2 = X \mod X_n$. Eventually applying matrices

$$\begin{pmatrix} U & V \\ 0 & W \end{pmatrix}$$
, $U \in GL(d, A_n)$, $W \in GL(t - d, A_n)$

we obtain X. The proof is over.

In [5] it was shown that if L was a free algebra over a field in a nilpotent variety and P retract of L, then P was free and L = P*B. The following example shows that this condition is not satisfied in metabelian Lie algebras, though by [3] and [4] they are quite close to nilpotent algebras. Let L be a free metabelian algebra over a ring k with the base e_1, e_2 . Define f: L \longrightarrow L, f = (h, φ) as in § 1 by

(7)
$$h(e_1) = e_1 + Xe_2 - Ye_1, h(e_2) = 0, \varphi(X) = X, \varphi(Y) = 0.$$

Then $f^2 = f$. Suppose that there exists a base $u_1 = h(e_1)$, u_2 in M such that $\mathcal{L}(u_1) = X$, $\mathcal{L}(u_2) = Y$ and $h(u_2) = 0$. By Theorem 3

$$u_1 = (1 + xyg)e_1 + y^2ge_2$$
 $g \in k[x, y]$

Via (7) this is not possible. Hence Imf is not a free factor of L.

§ 4. Homomorphisms of free metabelian A_qA -groups. Let $q \ge 0$ and $q \ne 1$. If C_n is a free abelian group with free generators X_1, \dots, X_n consider a group ring $K = \mathbb{Z}/q \mathbb{Z}$ $C_n = \mathbb{Z}/q \mathbb{Z} \left[X_1^{\pm 4}, \dots, X_n^{\pm 7} \right]$ with the augmentation ideal $\mathcal{M} = (X_1 - 1, \dots, X_n - 1)$. Let M be a free K-module with the base e_1, \dots, e_n . Define $\ell: M \longrightarrow \mathcal{M}$ by $\ell(e_1) = X_1 - 1$. Following [1],[2] a free A_qA -group F of rank n is a group of all matrices

(8)
$$\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \quad a \in C_n, b \in M, \quad \mathcal{L}(b) = a - 1.$$

The free generators of F are

$$\begin{pmatrix} x_i & 0 \\ e_i & 1 \end{pmatrix} \quad i = 1, \dots, n.$$

Note that by [1] F' consists of all matrices (8) with a=1, or equally $\ell(b)=0$.

We are going to show that the results similar to those of § 1, 3 hold for metabelian groups. Let C_1 be a free abelian group with the base X_1, \ldots, X_n ; C_2 with the base Y_1, \ldots, Y_f ; $K_1 = \mathbb{Z}/q \mathbb{Z}$ C_1 , M_1 , M_1 , M_1 , M_1 , M_1 , M_2 , correspond to free A_qA -groups F_1 and F_2 . Let $f \colon F_1 \longrightarrow F_2$ be a group homomorphism. As in [1] define $g \colon K_1 \longrightarrow K_2$ and $h \colon M_1 \longrightarrow M_2$ by

(9)
$$f\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} = \begin{pmatrix} g(a), 0 \\ h(b), 1 \end{pmatrix}$$

Thus by (9) we define group homomorphism $\varphi: C_1 \longrightarrow C_2$ which in its turn determines ring homomorphism $\varphi: K_1 \longrightarrow K_2$. An easy calculation based on matrix multiplication shows that h is a φ -semilinear homomorphism h: $M_1 \longrightarrow M_2$. Note that by (9)

(9')
$$\ell_2(h(b)) = \varphi(a) - 1 = \varphi(\ell_1(b))$$

or equally, the following diagram is commutative

Conversely, if $\varphi: C_1 \longrightarrow C_2$ is a group homomorphism, h: $: M_1 \longrightarrow M_2$ is a φ -semilinear morphism and (9'') is commutative, then by (9) the pair (h, φ) determines group homomorphism $f = (h, \varphi): F_1 \longrightarrow F_2$. It is clear that this correspondence is one-to-one and is functorial.

Theorem 5. Let $f: F_1 \longrightarrow F_2$ be an epimorphism of free A_qA -groups, $q \ge 0$, $q \ne 1$, $rkF_1 = n$, $rkF_2 = d$. Then there exists a base z_1, \dots, z_n in F_1 such that $f(z_1), \dots, f(z_d)$ is a base for F_2 and z_{d+1}, \dots, z_n generate Kerf as a normal subgroup.

<u>Corollary</u>. Let P be a retract of a free A_qA -group F with a projection f: F \longrightarrow P. Then F possesses a base z_1, \cdots, z_n as in Theorem 5 and in addition $f(z_i) \equiv z_i \mod Kerf$, $i = 1, \dots, d$.

The proof follows immediately from freeness of P (see [2]).

<u>Proof of Theorem 5.</u> First we assume that q = 0 or q is a prime. If $f: F_1 \longrightarrow F_2$ is onto as in § 3 we can assume that

(10)
$$q(x_i) = \begin{cases} x_i, & i = 1,...,d, \\ \\ 1, & i = d+1,...,n. \end{cases}$$

Put $J = (X_{d+1} - 1, ..., X_n - 1) \triangleleft X_1$. If $A_1 = \mathbb{Z}/q \mathbb{Z} [X_1^{\pm 1}, ...]$

..., $x_1^{\pm 4}$], then by [8] the conditions 1) - 4) in § 3, where x_1 stands for x_1 - 1, are satisfied. Hence, as in the proof of Theorem 4 we can choose in m_1 a new base m_1, \ldots, m_n such that if m_1 = (h, m_2), then

$$\ell_1(u_i) = X_i - 1, i = 1,...,n;$$

 $u_i \in \text{Kerh}, j = d + 1,...,n,$

and $h(u_1),...,h(u_d)$ is the base for M_2 . By (9),(9'),(9'') and (10)

$$\mathbf{z_i} = \begin{pmatrix} \mathbf{x_i} & \mathbf{0} \\ \mathbf{u_i} & \mathbf{1} \end{pmatrix}$$

is the necessary base for F_1 (see [1, 2]). Thus in the case q = 0 or q prime the theorem is proved.

Suppose now that $q = p^t$, where p is a prime, and $f: F_1 \rightarrow F_2$ as in the theorem. Let $N_1 \triangleleft F_1$ be a verbal subgroup in F_1 corresponding to the subvariety $A_pA \subset A_qA$. Then f induces $f': F_1/N_1 \longrightarrow F_2/N_2$. By the preceding results there exists a base z_1, \ldots, z_n in F_1/N_2 associated with f'. By [2] there is a base z_1, \ldots, z_n in F_1 such that $z_1 \equiv z_1' \mod N_1$. By the same argument $f(z_1), \ldots, f(z_d)$ is a base for F_2 . Thus,

 $f(z_j) = g_j(f(z_1), \dots, f(z_d)), j = d + 1, \dots, n$ and hence,

$$z_1,...,z_d$$
, z_j $g_j^{-1}(z_1,...,z_d)$, $j=d+1,...,n$ is the base we need.

Finally we have to consider the case of arbitrary q>2. Let q have a prime-power factorization $q=\Pi \ q_i$ with prime powers q_i . Note that q_i are coprime for distinct i. Let f, $F_1, C_1, K_1, M_1, m_1, \ell_1, i = 1,2$, be as above. Put $s_1 = qq_1^{-1}$ and consider a $\mathbb{Z}/q_j \mathbb{Z}$ C_1 -module $s_j M_1$ with epimorphism of $\mathbb{Z}/q_j \mathbb{Z}$ C_1 -modules

$$s_j \ell_i : s_j M_i \longrightarrow s_j m_i$$
.

As in [2] the group F_{ij} of all matrices

$$\begin{pmatrix} a & 0 \\ s_{j}b & 1 \end{pmatrix} , a \in C_{i}, b \in M_{i}, s_{j}(a-1) = s_{j} \mathcal{L}_{i}(b)$$

forms a free $A_{q,i}^{A-group}$ with free generators

$$\begin{pmatrix} x_i & 0 \\ s_i e_i & 1 \end{pmatrix}, i = 1, \dots, n.$$

The epimorphism $f\colon F_1\longrightarrow F_2$ induces epimorphism $f_j\colon F_{1j}\longrightarrow F_{2j}$ for all j. From a prime power case for every j there is a base z_{1j},\dots,z_{nj} in F_{1j} such that images of the first d of them form a base in F_{2j} , the others generate Ker f_j as a normal subgroup. Moreover, as it follows from the preceding case

$$z_{i,j} = \begin{pmatrix} x_i & 0 \\ s_j u_{i,j} & 1 \end{pmatrix}$$
, $i = 1,...,n$.

By [2] there exist free generators $\mathbf{z}_1, \dots, \mathbf{z}_n$ in \mathbf{f}_i such that

$$\mathbf{z_i} = \begin{pmatrix} \mathbf{x_i} & \mathbf{0} \\ \mathbf{u_i} & \mathbf{1} \end{pmatrix}$$

and $s_j u_i = s_j u_{ij}$ for all i, j. The same argument shows that images of z_1, \dots, z_d form a free generating set for F_2 . Thus as in prime-power case we can construct the necessary base

 $z_1, \dots, z_d, z_j g_j^{-1}$, $j = d + 1, \dots, n$, where $g_j = g_j(z_1, \dots, z_d)$.

Acknowledgment.

I would like to express my thanks to the staff of Algebra Department of the Charles University in Prague for their hospitality.

References

- [1] S. BACHMUTH: Automorphisms of free metabelian groups, Trans. Amer. Math.Soc. 118(1965), 93-104.
- [2] V.A. ARTAMONOV: Projective metabelian groups and Lie algebras, Izv. Akad. Nauk SSSR, ser. mat. (submitted).
- [3] Ju. A. BAHTURIN: Two remarks on varieties of Lie algebras, Mat. Zametki 4(1968), 387-398.
- [4] V.A. ARTAMONOV: Semisimple varieties of multioperator algebras, Izv. Vysš. Učebn. Zaved., Matematika 11(1971), 3-10; 12(1971), 15-21.
- [5] V. A. ARTAMONOV: Nilpotence, projectivity, freeness, Vestrik Mosk. Univ. 5(1971), 34-37.
- [6] M.S. BURGIN: Free epimorphic images of free linear algebras, Mat. Zametki 11(1972), 537-544.
- [7] V.A. ARTAMONOV: Projective metabelian Lie algebras of finite rank, Izv. Akad. Nauk SSSR, Ser. Mat. 36(1972), 510-522.
- [8] A.A. SOUSLIN: Projective modules over polynomial rings are free, Dokl. Akad. Nauk SSSR 229(1976).
- [9] H. BASS: Algebraic K-theory, Benjamin, New York, Amsterdam, 1968.

Department of Mechanics and Mathematics
Moscow State University
117234 Moscow
U S S R

(Oblatum 25.10.1976)

