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GRAPHS WITH PRESCRIBED MAXIMAL SUBGRAPHS AND CRITICAL
CHROMATIC GRAPHS
Heinz-Jurgen VOSS, Ilmenau

Abstract: It 1s proved that k-chromatic-critical graphs
of large order contain large subgraphs of a certain structu-
re. One of these results is that each large k-chromatic-cri-
tical graph contains a large odd circuit. A more general re-
sult is that if a large 2-connected graph G contains sub- .
graphs of a certain structure of order N but not of order >N
then G contains at least two dis%oint isomorphic subgraphs
not linked by an edge which are "isomorphically"connected to
the rest G - Hl - Hz by edges. A so-called p-reduction is stu-

died for such graphs.

Key words: Critical chromatic graph, subgraph, p-reduc-
tion.

AMS: 05C15 Ref. %.: 8.83
1. Graphs with prescribed maximal subgraphs. We consider

undirected finite graphs without loops and multiple edges. If
we handle with infinite graphs we say this explicitly. Furth-
er definitions are used as in (15]. We say that a path t is

a topological edge in a graph G, iff all inner vertices have
in G the valency 2 and the two endvertices have a valency = 3.
The class K of finite graphs is said to have property E if for
each graph GeEK it holds: If t is an arbitrary topological
edge only the endvertices of which are contained in G then

G + t contains a subgraph G’e K with t=G”.
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Now we will present a few of such classes. A graph G is said
to be contractible to a graph G’ iff there exists a homomor-
phism ¢ from G onto G’ with the properties:

1) For each vertex X~ of G’ it holds: The spanning sub-
graph of the vertex set ¢ 1(X’) in G is a tree.

2) For each pair 4X°,Y"} of different vertices of G’ it
holds:
a) 97-1()(') and Qﬂ-l(Y') are joined by at most one edge.
b) X’ and ¥ are joined by an edge in G’ 1ff ¢ “L(X') and
¢ -.l(Y') are joined by an edge.
That means G° can be obtained from G by consecutive contract-
ions of edges not contained in triangles.
A prismgraph consists of two circuits, which have at most one
common vertex and which are united by three vertex-disJjoint
paths; if the two circuits have a common vertex then one path

has length O.

Theorep 1: The class W of all paths , the class C of all
circuits, the class O of all odd circuits, the class P of all
prismgraphs, the class < r,S> of all 2-connected graphs con-
tractible to a complete r-graph (v=4) and the class V(sl,sz,
33,84,...,sp) have property E.

Each graph of the latter class can be formed as follows: We

start with a set-i.H‘J} of 8) + 8, # 8y +8, + ... %8 pair-

p
wise disjoint graphs; s; of which are isolated vertices, S5
8398 41000,8, aTe graphs of C, P,{4,S>,...,<{p,S>» , respec-
tively. Then we consecutively link two components by a topo-

logical edge until we have obtained a connected graph. V(sl)
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is the set of all trees with at most s; endvertices. V(sl,sz)
1s the set of all Husimi_trees with at most s, vertices of
valency 1 and exactly 8, circuits.

Proof of Theorem 1: Let Ge WuCUOUPU ... and let Vl,
Wz be the two different endvertices of a topological edge w
with Ghw =4V,,V,% .
a) Obviously, W and C have E.
b) Let G€ O. The two circuit arcs of G between V; and V, he-'
ve different parity. Let t denote the one which has the same
parity as w. Then G + W - t€ O with wEG + w - t.
c) For the class P the proof can easily be obtained by distin-
guishing some cases,
d) Let Ge <(r,S> and let G’ denote a complete r-graph. We
have only to consider two cases:

1) There exists one vertex X' of G* and a homomorphism
@ of G onto G* such that V;,V, € ¢ 2(X'). The spanned sub-
graph U of cy-l(X') is a tree, therefore U + w contains ex-
actly one circuit C.
Let e be an edge of C not contained in w. We delete in G + w
the topological edge t of G + w containing e and we have a
new tree U + w = t. It is easily to be seen that with
U+ w=t) =4, X" we have G + w - te <r,S> .

2) There exist two different adjacent vertices X and Y’
of G° and @ homomorphism @ of G onto G* such that vV, e
e @ XxX") and V, € ¢ "1(Y’). Then there is in G an edge e
connecting c;-l(x') and qp'l(Y'). Let t denote the topologi-
cal edge of G + w containing e. Now it can easily be seen

that wEG + w -t and G + w - t is an element of < r,S) .Thus
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the proof of d) is complete.

e) Let Ge V(sl,...,sp). If waly = £vl,v2,§ then the vali-

dity of the Theorem can easily be derived from a) ... d). If

for all j it holds llwnHJ Il €1 then G + w has a circuit con-

taining w and a topological edge t with tnw & {Vl,vz} and for

ail J it holds It NHy €1, Then wsG + w - tev(sl,...,sp).
Q.e.d.

Repark: The class of all circuits containing a certain
vertex X also has property E but the class of all circuits
containing two certain vertices X and Y has not property E,

Theorem 2: a) Let K denote a class of finite graphs
with property E and let N be a positive integer. Let G be a
2-connected (finite or infinite) graph which contains & graph
He K of order N but which does not contain an element of K of
order = N. Then the length 1 of a maximal circuit L of G is
14N,

b) If K =0 then & 2(N -1),

In a) the bound is not best possible. That in b) the bound is
best possible is shown by the graph which consists of two ver—
tices of valency 3 which are linked by an edge and by two to-
pological edges of length N - £(N odd).

By Theorem 2b in each 2-connected nonbipartite graph G it
holds £* & £ £ 2(R* - 1) where £, £* denote the maximal cir-
cult length and the maximal odd circuit lergth, respectively
(provided £* exists).

A similer assertion for the maximal even circuit length does
not hold. G.A. Dirac proved in [2] that in 2-connected finite
graphs it holds that £ - 142 £ 12 vwhere £ denotes the maximal
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path length of G. It can be shown that .2 - 1224 8%/4 (see
G.A. Dirac [2], see also [15) and[13] . In the following
A (H) and o(H) denote the number of edges or vertices of H,
respectively.
Proof of Theorem 2: a) We distinguish two cases.

1) Let ILAHI £1. Then there exist two disjoint paths Wi
w, connecting L and H (possibly A (w;) =0). Let X; =3egWiN H
and Y, =3eg¥4N Lo Let Ly, L, denote the two circuit arcs of L'
between Yy and Y. py =wy +L; *wy (i =1,2) are two
paths with p;n H = {xl,xzi 5
By Theorem 1 it follows that H + p; contains a subgraph H:l
with py € H; € K. Therefore

Alwy) * A(Ly) + Alwy) = A(py) £ o(Hy) % o(H) = N,
Hence A (Ly)€N -1 and 2 = A(L)£2(N - 1),

2) Let LAHI| = 2, Then L can be split up in arcs LysLyyeee
...,Lq such that for each i1 it holds:
Either Lyn H = L, or LynH = 4P},P3 § where P, PL are the
two endvertices of L;. In both ceses we have A(L,;)& o(H) =
= N (in the case Lyn H ={P%,P%§ see 1)), Because q<N it
follows A (L)& N2,

b) Let HeO. If L is and odd circuit A(L) = o(H) = N,
Now let L be an even circuit.
If IHALJl €1 the assertion b) of the Theorem follows from
the proof al).
Now let (HALIlZ 2. Let P and Q be two arbitrary vertices of
HAL. Because He O and L is an even circuit the parity of one
of the two circuit arcs of H between P and Q is different from

the parity of the two circuit arcs of L between P and Q. From
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this it can easily be derived that there exists a circuit
arc H of d with | HALl = 2 and the parity of H is different
from the parity of the two circuit arcs Ll,Lz‘of L connect-
ing the two vertices of HAL in L. Hence L, + He¢O and

A@L) +2a(H = AL, + B N A(L, + H)<2 N,

with A(H)2 1 the Theorem 2 is proved.

Let p be a positive integer. Now we will define the so call-
ed p-reduction of finite and infinite graphs described in
[15]. Two finite subgraphs Ul' Uz of a finite or infinite
graph G are called independent, if they do not have a common
vertex and if they are not connected by an edge. Two finite
subgraphs Uy, U, of G are called equivalent, if U;= UZ or if
U; and U2 are independent and there exists an isomorphism of
the grap G - Ul onto the graph G - 02 such that all verti-
ces of G - Uy = U, are fixed.

Let M be a class of pairwise independent finite subgraphs of
G, then the above formulated so called equivalence is an equi-
valence relation in M. Therefore M is divided in equivalence
classes. From each equivalence class with more than p elements
we delete in G so many elements of this equivalence class that
in G only p elements remain. We call this deletion an "elemen-
tary p-reduction"”. ,

A sequence of a finite number of elementary p-reductions is
called a p-reduction. If the obtained graph is denoted by G
then we write G & G',

Let K be a class of finite graphs with property E. Let N be
an integer.

Z(K,N) denotes the class of all 2-connected finite and
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infinite graphs which contain an element of K of order N but
which do not contain an element of K of order > N. For this
class we can prove a finiteness condition in the following
sense:

Each large graph Ge Z(K,N) contains p + 1 equivalent subgraphs;
that mesns to each positive integer p there exists a positive

integer n(p,K,N) such that every Ge 2(K,N) of order = n(p,K,N)

.

contai‘ns p + 1 equivalent subgraphs. We define

« (C,N) =[’%] +1and p(C,N) =[N2—] e

«(0,N) = N and ((0,N) = N - 2,

«<(K,N) = (K,N) = [N2/2] + 1, 1f K+C, K40,

Theorem 3: Let p, N be integers with N>3 and p = « (K,N).
Then
a) To each Ge Z(K,N) there exists a p-irreducible graph 6’
with G & G’. The graph G° can be obtained from G by a sequence
of at most 3 (K,N) elementary p-reductions.
b) Every p-irreducible graph G° with G'< G 1s up to isomor-
phism uniquely determined, is finite and it is also ¢'e
e Z(K,N).
¢) 2(X,N) only contains a finite number of unisomorphi p—
irreducible graphs.
In Theorem 3a) for some graphs of Z(C,N) and Z(0,N) we really
need (3 (C,N) = [%]- 1 or (3(0,N) =N - 2 elementary p-re-
ductions, respectively, to obtain the p-irreducible graph.
For Z(C,N) we have shown this in [15]. For 2(O,N) this is pro-
ved by the following graph:
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We consider a tree T with a root X such that the distance
between X and each endvertex is N - 2, that each inner vert-
ex has a valency 2p + 1 and that every two inner vertices
have different valencies. To this tree we add a new vertex Y
and link it with X and the endvertices of T by edges.

Let Go X denote the graph obtained from a graph G by ad-
ding a new vertex X and linking X to each vertex of G by an
edge. Let 'Z_(W,N) be the class of all connected graphs contain-
ing a path of length N but no path of length >N, Then G e
€ Z(W,N) 1ff GoXe Z(C,N + 2). Therefore it yields the

Remark: The Theorem 3 is also valid for Z(W,N) with

& (w,N) =[—2_’-] +2and J3(W,N) =[g—] .

Proof of Theorem d: In the case K = C the Theorem was:

proved in [15], it is not proved here again. If K& C then from
Theorem 2 it rollows:

2(N-1)
z(o,N) & ,L/N Z(C,i) and

i2
Z(K,N)siLja z(c,1), if K40,

By applying the result already known for Z(C,1) we obtain the
Theorem also in the case that K# C. It remains only to show
that if Ge Z(K,N) and G + G then G” contains a subgraph of
K of order N. But this can easily be done by taking the follo-
wing into consideration: If He K, HEG and o(H) = N, then each
p-reduction can be chosen such that no vertex of H is deleted

(notice that p2 N if K#%C and pZN/2 +1 if K = (), Q.e.d.
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2. Critical chromatic graphs. In 2. we only consider

finite graphs. The chromatic number of a graph G is denoted
by % (G). A graph is called k-critical, iff its chromatic
number is k and by the deletion of an arbitrary edge the re=-
sulting graph has the chromatic number k - 1, In this paper
only k-critical graphs with k=3, are considered.

Lemma: Let G, G” be graphs with G & G’. Then
x(G7) = x(G).

Proof: It suffices to show that if U; and U, are two
equivalent subgraphs of G then 7 (G - Uz) = x(G). But this
can be seen by the fact that each suitable colouring of G -
= U, can be extended to a suitable colouring of G by giving
the same colour to the vertices X and ¢ (X) for each XeU;
whereby ¢ denotes an isomorphism of G = Ué onto G = Ul with
fixed G - Uy - U,. Q.e.d.

It is well known that each critical graph is 2-connected.
z(K,N,k) denotes the set of all k-critical graphs Ge Z(K,N),

Theorem 4: Let K be a class of graphs with property E,
Then Z(K,N,k) contains only a finite number of nonisomorphiec
graphs.

Proof: The Lemma shows that all graphs Ge Z(K,N,k) are
l-irreducible and also p-irreducible. Because Z(K,N) only con-
tains o finite number of p-irreducible graphs (Theorem 3) the
truth of Theorem 4 follows from Z(K,N,k)& Z(K,N). Q.e.d.

Theorem 4 states that each k-critical graph of large or-
der which has an element of K as a subgraph contains also a
large graph of K. If F(K,n,k) is the largest integer such that

every k-critical graph of order n which has an element of K
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as a subgraph, contains a subgraph of K of order = F(K,n,k)
then

(1) lim F(K,n,k) =+ co .
m > co

Obviously, for k=3 each k-critical graph contains a subgraph
He d and a subgraph H e 0. Thus each large k-critical graph
contains a large circuit and also a large odd circuit. The
first assertion was proved by J.B. Kelly and L.M. Kelly [10]
in 1954, the second assertion gives an answer of case 2¢ = 3
of the question posed by J. Ne3et#il and V. Rodl at the Inter-
national Colloquium on Finite and Infinite Sets held in 1973

in Keszthely in Hungary(oral communication):

Problem: ZLet 2 ,k,N be arbitrary positive integers with
% < k. Does there exist a positive integer n such that each
k-critical graph G with at least n vertices contains a 2¢ -cri-

tical subgraph G’ with at least N vertices?

The order of the magnitude of F(C,n,k) was investigated
by J.B. Kelly and L.M. Kelly [101, G.A. Dirac [31 and R.C. Read
(12]. T. Gallai [8] has obtained a sharpening of these results
by showlng that for an infinite set of different positive in-
tegers n there exist k-critical graphs of order n of maximal
circuit length £ ¢y log n, where ¢, 1s an appropriate con-
stant. From Theorem 2b) it follows that F(C,n,k) and F(O,n,k)
have the same magniidde. .

It also yields that the result "each large k-critical graph
contains a large odd circuit" can be derived from the result
of Kelly/Kelly "each large k-critical graph contains a large

circuit"” by means of Theorem 2b.
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Before discussing other classes K we define: If r 23,

then a topological complete r-graph consists of r branching
vertices and of (’2") topological edges such that every two

branching vertices are linked by exactly one topological ed-
ge. {r,U) denotes the class of all topological complete r-
graph .

G.A. Dirac [1] has proved that each 4-critical graph con-
tains a ¢ 4,UY . B, Zeidl 116 ) has shown that for k>4 each I
k-critical graph has a { 4,U?, containing a circuit of odd
length.

In (4] G.A. Dirac has proved that each circuit of & 4-criti-
cal graph is contained in a {(4,U)> . If we apply this result
to the largest circuits and to the largest odd circuits, then
we obtain from (1) with respect to K = C and K = 0: For k>4
each large k-critical graph has a large (4,U) and also a
large ¢ 4,U)> containing a circuit of odd length, respective-
1ly.

In this paper I proved the first statement again (see
(1)) but I cannot reprove the second statement with the aid
of Theorem 3 because the class of all graphs of {(4,U) cont-
aining an odd circuit has not property E.

Because each k-critical graph has no vertex of valency &£k - 2,

every k-critical graph of order n has 2 % (k = 1) n edges.

This lower bound was improved by T. Gallai [8]and G.A. Dirac
[6)]. For k26 each k-=critical graph contains at lest 3 n

2
edges. A result of G.A. Dirac [5] says that each simple graph
of order n> 5 with at least -g—_ n-3 edges contains a graph
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obtained from a graph of the class < 5,U) by deleting one
and only one topological edge. Because this graph has a spe-
cial prismgraph it follows: For k26 each k-critical graph
contains a prismgraph and with (1) each large k-critical
graph contains a large prismgraph.

K. Wagrer [14](H.A. Jung [9]) has proved: For every po=-
gitive integer r there exists an integer kr (an integer k; )
such that for all positive integers k2k, (kzk;, ) each k-
critical graph contains a <(r,S)> (a <¢r,U> ) - also see W.
Mader [111. By (1) from this it follows: For all k2 k, each
large k-critical graph contains a large <(r,S).

But by our methods it cannot be shown that for all kzk;
each large k-critical graph contains a large <(r,U ) becau-
se (r,U) has not property E. We do also not know whether
this assertion is true.

By definition we have

¥, Z2(K, N, k) € Z(K,N).

Because by Theorem 3¢ the number of nonisomorphic graphs of
Z(K,N) is finite we have that there exists a positive inte-
ger k(K,N) such shat Z(K,N,k) = # for all kZ k(K,N), By a re-
sult of P. Erdos and H. Hajnal we can take k(O,N) = N + 2 pe-
cause they showed in L7]: Every graph which does not contain
circuits of lengths 2j + 1 for all Jz 1 is suitable colour-
able by 21 colours.
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