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GRAPHS WITH GIVEN SUBGRAPHS REPRESENT ALJ- CATEGORIES
Véclav KOUBEK, Praha

Abstract: Let G be an arbitrary finite graph without
loops. Denote by GRAG a full subcategory of the category of

all graphs and compatible mappings generated b{ all graphs
such that for each edge there exists their full subgraph iso-
morphic to G containing this edge. We prove that there exists
a strong embedding the category of all graphs into GRAG, in

particular, GRAG is binding.
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It is well-known that for every monoid M there exists @
graph (X,R} such that the endomorphism monoid of (X,R) is iso-
morphic to M, and, if M is finite then X can be finite, too.

Z. Hedrlin and L. Ku¥era obtained a stronger result: every con-
crete category can be fully embedded into the category GRA of
all graphs. This has lead to the next important question:

Into which categories the category GRA can be fully embedded?
When solving this problem we often see that it is much easier
to embed into a given category not directly GRA but rather an-
other category, into which GRA can be embedded. To this end,

we use some full subcategories of GRA, e.g. the category of all

undirected graphs, of all connected graphs etc. Therefore we
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have to know which full subcategories of the category GRA are
binding (i.e. the category GRA can be fully embedded into them).
For instance, this question was solved in the following papers
(2,4,5,6,8,9,10,117.

The aim of this note is to prove that for every finite
graph (X,R) without loops such that R%@ there exists a strong
embedding of the category GRA to its full subcategory which con-

tains those graphs, each edge of which lies in a full subgraph,
isomorphic to (X,R).

Definition [12], Let (K,U),(L,V) be concrete categories.
A full embedding & : K—> L is called a strong embedding if
there exists a set functor F: Set—» Set such that the following

diagram commutes

®

K ——> L

Ul lv

Set ——————— Set

We use a modification of a general construction of E. Men-
delsohn [10]. We shall define a 8fp-product (or &{p-sou¥in)
(X,R,R",4,B) % (Y,S) of a 81p (X,R,R",A,B) and an arbitrary graph
(Y,S) where X is a set, R’c Rc X=X, i.e. R, R’ are relations
on X, A, B are disjoint subsets of X such that there exists a
bijection 1: A—>B, 1x 1(RA(AxA)) = RN(BxB) and ix1(R'A
A (A»A)) = R'n (BxB), Now, (X,R,R’,A,B)% (Y,S) is a quotiént
graph of (XxY¥xY,T =-((xl,yl,yz),(xz,yl,yz)); (xl,xz)e R,
(319,06 304 ((x),5145,), (x5,¥709,))5 (x1,%,) 6 R, (y1235)e
€ ((¥Y=Y) - S)% ) under the equivalence pr which is defined as
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follows: (xl,yl,ul)~(x2,y2.u2) whenever

either Xy = Xy€ A and Y1 =Y

or 1(x;) = Xy and ¥y = u,

Or X; = x,€&B and uy =u,.

Intuitively, the 3f{p-product is obtained by replacing
every arrow or the graph (Y,S) with the starting point a and
the endpoint b of a copy of the graph (X,R), where the set A
replaces the point a and B replaces b and every arrow of
(YxY) =S with the starting point a and the endpoint b by a
copy of the graph (X,R') where A replaces a and B replaces b.

Let £: (Y,8)—=(Y",S") be a compatible mapping, then a
mapping £*: (X,R,R',A,B)*(x,s)—-»(x,R,R’,A,B)*(r’,s’) de-
fined by f* (x,yl,yz) = (x,f(yl),f(yz)) is compatible and the-
refore $ (Y,8) = (X,R,R",4,B) % (Y,8), &£ =r£* is a functor.
Notice that £= ((C,x I)v (Q,x Cx-(aup)) )€ where C, or Cy_(, o
are constant set functors to A or X - (AUB), I is the identi-
ty set functor and Q2 is the set hom-functor to two-point set.
Hence, if § 1is a full embedding then it is a strong embed-
ding.

Definition. A 31p (X,R,R",A,B) is called strongly rigid
if for every graph (Y,S) and every compatible mapping
£: (X,R)—~ (X,R,R",A,B)% (Y,S) (or f: (X,R")—>(X,R,R",A,B) %
* (Y,S)) there exists (yl,yz)es (or (yl,yz)e Y=Y) with £(x) =

= Ux,yl»yz)l for every xe€X ([(x,yl,yz)] is the class of ~
containing (x,yl,yz)).

Proposition 1. If (X,R,R",A,B) is strongly rigid then
® is a strong embedding.
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Proof. It suffices to prove that ¢ is full. The proof
is an easy modification of the proof in [101. Let (Y,S),(Y",s”)
be graphs and let f£: (X,R,R",A,B) % (Y,§)— (X,R,R",4,B) %
*(¥°,S°) be a compatible mapping. Since (X,R,R*,A,B) is
strongly rigid we get that for every couple (yl,yz)e YxY the-
re exists (uj,u;)e€ Y Y* with £( [(x,y7,95)3) = [ (x,u;,u,)]
for every x¢ X and, moreover, if (y;,¥;)€ § then (uj,u,)e s’,
Therefore, we can define h: YxY—> Y'= Y’ by hiy;,¥,) =

= (“1'“2)‘ Further if y,,¥,,¥3€ ¥, then £([ (x,¥7,¥5) ] ) =

=2([ (x,yl.y3)l ) for every x€ A and so if h(y,,¥,) =

= <u1’u2)' h(yl,ya) = (u3,u‘) then u; = uj. Anelogously, we

prove that if h(yl,yz) = (uy,u,) and h(yl,yz) = (uJ,u4) then

u, = u,. Therefore there exist g),g;: Y—> Y° , with h = gy

» g,o Further £{[ (x,,y,,¥,)]1 ) = £([ (x,,¥:y¥,)] ) whenever
& 1271992 2093191

x,€ A and :l(xl) = x5, hence gl(yl) = Sz(yl) md thus g = gy

Therefore h = gx g (where g; =g = 32) and because h(S)c s’

we get that g is compatible. Clearly g* = £,

We shall comstruct a 3{p with special properties and
therefore we shall need special rigid graphs (i.e. graphs

which have no non-identical endomorphism).

Definition. Let (X,R) be a graph, x,y€ X. A sequence
m
-{Kﬁ g=1» K4c X such that card Ky =n, card (Kin K1+1) =
=n -1, (K,Rn (K4 Ki)) is a complete graph without loops
for every i = 1,2,...,m is an n-path connecting x with y in
(X,R) if xeK,, YeK .

Note. If £: (X,R)—>(Y,S) is a compatible mapping and

(Y,S) has not loops t“~= “ <1aps every n-path into an n-path.

Y
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Lemmg 2. For every triple (m,n,p) of natural numbers
such that m is a non-trivial multiple of n, n>p + 2 there
exists a graph Iz’p = (Mm'Qn,p) where M, ={0,1,2,...,m} such
that

1) for every distinct points X,y € llm there exists an
n-path connecting x with y;

2) for every edge (x,y)e Qn,p there exists Zc M, sueh
that x,ye 2, card Z= p and (Z,Qn'ph(z»c Z)}) 18 a complete

graph without loops (i.e. I:. has not loops and it is symmet-

P
ric);
3) there exists an edge (x,y)e Qn,p with the following
N
property: for every Zc M, such that x,ye 2 and (Z,Qn,p
n(Z»2)) is a complete graph without loops, card Z£ p;

4) the chromatic number of (Z,Qn.pr\(’Zx Z)) is n + 1 iff

Z = Mm;
m .
5) I, 1smr1gid, )
. m ’
6) 1if f: In’p—a- In,p' is compatible then m=m’ and

p& p', moreover, if m = m’ then £ is compatible iff p‘p' and
f is the identity mapping;

7) for every xe M, card {y; (x,y)e Qn,p} £ 2n,
Proof see [91],

Definition. For a triple (m,n,p) of natural numbers such
that m is a non-trivial multiple of n, n>p + 2 define

= {(x,y); x<y,(x,y)e Q,

Pnop s P LR

Clearly, Q =4$(x,y); (x,y)e P or (y,x)e Pn, .

n,p n,p P
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Construction 3. Let Gy = (XO,RO) be a connected graph
without loops such that ¥, > card X0>l. Then for arbitrary
natural numbers Ny 1 Pg such that Pg> card XO, ng> Py *

+ (4. card Xy) - 6 we construct a 31p :f(Go,no,po) =

= (2,7,7°,A,B). First assume that card Xg> 2. Choose (xn,yy)€
€ Ry. Choose a bijection ¢ :40,1,...,card X - 33— Xy -
- 4x3,70% and identify 1 with ¢ (1), then X, ={0,1,...,
card X5 - 3, xo,yo} .

For i = 0,1,..., (2¢ card Xg) = 5 denote by my =

= Dis(2.card X4 = o ° (pg # 1)« (py + 1 + (2« card X3) -

- 4). Put

(2 + card Xo) -5

Z = () Mm"'iii'
i=0 i

We shall define Tl’TZ’T3’T4’T5'T6c Zx2Z,

For every J = 0,1,...,2n0, choose xie M; where 1 = 0,1,...,
(4 « card Xo) - 9. Further, for every i = 0,1,...,(4. card Xo)-
-9, by Condition 7 in Lemma 2 there exists a decomposition

{'13; 3=0,1,...,200} of Pog,pg+d P90 that if (x,5),(z,v)e

5'3 then xsv, y#z and, moreover, x-l-x}*y (of course
z*xé:&-v, too).
Now, 1f (k;,k,) € Ry then

2k1 2k2 2ky+1 2k2+l
j ,2kl),(xJ »2k,)), ((xJ 2k) + 1), (xJ 12k, + 1))e

N

((x

€ TN ‘1‘2 for every j = 0,1,...,2n°;

if ;l;l,xo),(xo,kz),(k3,yo),(gg,k‘)e Ry then
(Cxy 1,2k1),(u,1)),((u,1),(xd 2,2k,))eT; if 1 is 0dd and there
exists v with (u,v)e w% ,
2k +1 2ky+1
((xJ y2ky + 1),(u,1)),((u,1),(xJ 12ky + 1))e Ty if i is
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even and there exists v with (u,v)ewé,

2k3 2k4
((xj ,21:3),(v,i)),((v,:‘.),(x'j ,2k4))eTl if 1 is odd and there
exists u with (u,v)s—wﬁ,

2ky+1 2k, +1
((xd y2ky + l),(v,i)),((v,i),(xd 12k, + 1))eT; if i is

even and there exists u with (u,v)er},

2k, 2k,
((xJ ,2k1),(u,i)),((u,1),(xj 12k,)) e T, if 1 is odd and the-

re exists v with (u,v)awj'z’z‘card % |
2k *1 2k,+1
((xy y2ky + 1),(u,i)l‘,((u,i),(xJ 2ky + 1)eT, if 4 1s

even and there exists v with (u,v)e€ w}-?-ﬁZ-card %o ,

21(3 2k4 -
((x‘j ,.’:‘1:3),(v,:t)),((v,i),(xJ ’2k4))“2 if 1 is odd and there

exists u with (u,v) e w§"2*2°08rd Xo ,

2k3+'1 2k4+4
((xJ 12kqy + 1),(v,i)),((v,i),(xJ 12k, *+ 1))e T, if 1 is even
and there exists u with (u,v)e w§-2+2- card Xg

if (u’v)EPnO’p0+i and 1£ (2. card Xy) = 5 then
((u,1),(v,1)e T,

((4,4),(v,1)),((v,4), (u,1)) e T,

if (u,v)e P 4 and 1> (2. card Xg) = 5 then

NgsPo*

((uyi + 2 = (24 card Xo)),(v,i +2 - (2. card Xo)))e T,

((uyi + 2 - (24 card Xg)),(v,d + 2 = (24 card X51)) % e,

((vyd + 2 - (24 card X3))y(u,i +2 = (2. card X330
Put T = T,uTg, T° = TyuUTy if (yo,xo)qino, T=T,UuT, T =
=TV T, if (yo,xo)e Ry. Further choose dis;inct points a,be
- - 't
€Z and put A ={a%, B=4{b}. Since id: I“O’po’i —_—
=

~* Iny,py+i-2+(2. cora x,) 18 compatible, we get that T'c 1.
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If cerd X, = 2 then ‘!(Ga,no,pa) is constructed for Pg> 2,

.

Ng> Py + 3 and we put Z =lln°p°, T= P"O’po’l' T = Pno’po
ir Go is not symmetric, T = QDO’pO"l’ T = Q"O’po if GO is

symmetric. Choose distinct points a,b€Z and put A =4ag, B =
= §b} . Clearly Tc T.

Lepma 4. Let Gy = (X;,R;) be a connected graph without
loops such that ¥ o >card X°> 1. Then for every edge (x,y'e T
or (x,y)e T’ of ‘!(Go,no,po) there exists a full subgraph of
1 (GO’nO'pO) isomorphic to Gy and containing (x,y).
Proof. Put ¢ (Gy,ny,py) = (Z,7,7°,4,B) where T° =TuT

3

(or T U Tg) and T = T, T, (or ToUTe). If (x,y)e TyU T,V sV
UTg then there exists i such that x = (u,1i), y = (v,1) and

1} (u,v)e Pno,pd,‘1 it (x,y)e T3

2) (u,v)e an,po,,1 if (x,y)e Tas

3) (u,v)e Pxxo,po-o-i-2+(2-card x°) if (x,y)e Ts,

4) (u,v)e qbo,po+1-2+(2ocerd X, if (x,y)eTg,
Then there exists j € {0,1,...,2!103 such that

a) (u,v)e'j or (v,u)e '3 it (x,y)e T3UT,,

) (u’v)e's-Z*CZ-card x")or (v,u) e wg-?.*(z- card Xo) if
(x,y)e Ty Tg.

Put z° ={(x’§,k); k+11s 0odd3ud x,y%. Then (2°,Tn (2k2"))
or (z°,7°n (2°% 2°)) 1s 1somorphic to G+ .

If (x,y)e T,v T, then there exist 1€ 40,1,...,card -3,

J€40,1,...,2n0% with (x21,21) € £x,53 or (xgiﬂ',Zi + )¢

€ {x,y%; assume that x = xgi (the proof for the other case

is analogous), If y = (x‘sk,Zk) for some k €40,1,..,card %= 3R
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then choose 1€ 40,13 such that 1 + 1° 18 odd and (u,17),
(v,1°) with (u,v)e Vlfj' y ((u,d7),(v,1" N eT if (x,y)6 Ty
((4,17,(v,4" ) e 1" 1f (x,y) € T;. Put 2° =4(x‘J‘; K; k+1

is even3ui(u,1”),(v,1")¢ . It is clear that a full subgraph
on z° is isomorphic to Go-

Ify = (u,i”) then 1 + 1" is odd. Choose (v,1’) such that
(u,9) € W5 and ((u,17),(v,1" ) €T 1f (x,3)e Ty, ((u,17),
(v,"))e?” if (x,y) € Ty. Put 2° =~i(x§,k); k +11is eveniou '
v{(u,1°),(v,1")} and, again, the full subgraph on Z° is iso-
morphic to Go.

Propogition 5. For every connected graph Gy = (xo,ROJ
without loops where . >card Xy>1, the ¥{p ‘:f(Go,no,po)
is strongly rigid.

Proof. Let ¢(Gq,ny,py) = (2,T,7°,4,B) and let (Y,S) be
an arbitrary graph. Assume that f: (Z,T)—b&((}o,no,po) * (Y,S)
is a compatible mapping. Put T* = {(x,y); (x,y)e T or (y,x) €
€T§. Denote by % (Gy,ng,Ry)* (Y,S) = (Y*,S") and put S* =
= {(x,y); (x,y)€S” or (y,x)€S'?. Then £: (2,T*)—>(Y* S*)
is a compatible mapping. Since (Y* ,S*) has not loops, we see
that f preserves ng-paths. Hence, by Lemma 2 for every i =

0y15...,2¢ card X5 = 5 there exist y;,z;€ Y with f(x,1) =

my * Further the restriction T*
my
to l(mix 4143 is isomorphic to Ino,p°+1-4+(2-card XO) and thus

(y4524)€ S. We are to prove that if f(x,:lo) =[ (x,io,yio,zie)]

[(x,1,y;124)] for every xeM

and f(x,:ll) =[ (x,il,yil,zil)l where i,,1; =0,1,...

eeey(2¢ card X;) - 5 then yio = yil and zio zil. It follows
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from the fact that there exist distinct points x]_,xz,x::‘,x4
with ((xl,io),(xz,‘ll)),((x3,1°),(x‘,il)e T* and if
((xl,io,yio,zio), (xz,il,yil,zil)),((x3,io,yio,zio),(x4,11,
Y1,0%1.)) e S* where ( z; ) ( z; ) then either x, = x
141 yio’_ 1y ¥i,0%1, 1 3
or x, = X, = a contradiction. Hence there exists (yl,yz)c S

with £(z) =[(z,y,,5,)] for every z€ 2. If £: (2,T7") —>
— ‘f(Go,no,po)* (Y,S) then the proof is analogous.

Defigition. Let G = (X,R) be a graph. Denote by GRA; the
full subcategory of GRA consisting of those graphs (¥,S) which
fulfil: for every edge (x,y)e S there exists ZCY with x,ye Z
such that (Z,5SN (2> 2Z)) is isomorphic to G.

Main Theorem 6. Let G = (X,R) be a finite non-trivial
graph without loops. Then there exists a strong embedding from
GRA into GRAg.

Proof. Let Gy = (xl’Rl)’ G, = (X2’R2)"‘Gm = (Xm,Rm) de-
note all components of G with Ry @#. Choose a sequence PpsPoyeee
eeeyPp with card X< Pj<Pp<eces Pp and a sequence of Dy yNyyeee
eeeynpy with ng« p; ¢ (2« card Xy -4+ pi)> card Z,_, where

4 (6y,n4,p4) = (24,14, Ti',Ai,Bi) for every i =1,2,...,m and
n) > p, - 6 + 4+ card X, Define ¥ : GRA —> GRAG as follows:

m
y(Y,s) = & (Gyyny,py )% (¥,8)v (‘.'\g/2 (z4,74))
where \ denotes the disjoint union and for 1 = 1,2,4e0,m
F(Gyyny,py) = (Zi,Ti,Ti,Ai,Bi). For 1 = 1,2,...,m define:

¥ £ on (Zi’Ti) is the identity mapping;
further, ¥ f on ¢(Gy,n),p))* (Y,S) i1s & f where & is the
embedding induced by '-.f(Gl,nl,pl). Since p;> card X we get
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that v (Y,S)e GRA;, hence Y : GRA—>GRAq.

Further, clearly, % 1s an embedding and if U is a forget-
ful functor from GRA %o Set then there exists a set functor
F: Set —> Set with Foe U =U » ¥ (because & 1is a strong
embedding by Propositions 1 and 5). Since either (Zl,Tl) or
(Zl’Ti) is isomorphic to some full subgraph of ‘Z(Gl,nl,pl)*
*(Y,8), it suffices to prove that if f: (Zi,Si)——*-(ZJ,SJ)
is compatible then i = j and £ is the identity mapping where
Sy =Ty or =T, and Sy =1y or Ti, i,j =1,2,...,m. Denote
S;: = 4(x,y); (x,ye Sy or (y,x)e S4% end S? = 4(x,y);
(x,y)e SJ or (y,x)e Sdi .

Since (ZJ,S; ) has no loop we get if x,y€ Z are connecting
with 5-path in (2;,SF ) then £(x}£(y) are connecting with
5-path in (ZJ,SJ‘),too. Therefore by the choice of n; and Py
and by Condition 6 in Lemma 2 we obtain that i = j.

Since ¢ (Gy,ng,py) ¥ (4x,yi,4(x,y)% ) = (Zi’Ti) and  ¥(Gy,
ng,pg) % (4x,y3 ,6) = (2,7 ) we get by Proposition 5 that
f is the identity mapping. The proof is concluded.,

C ar « For a finite graph G the category GRAG is
binding iff G has not loops and has at least one edge.

Corollary 8. In the finite set theory GRAG is binding
iff G has not loops and has at least one edge .

Proof follows Lrom the fact that < (G,n,p) is finite for

every graph G and every couple (n,p) of natural numbers.

Corollary 9. For every finite graph G without loops with
at least one edge and for every (finite) monoid M there exi st
infinitely many (finite) graphs (Y,3) such that:
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1) for every edge (x,y)e€ S there exists Zc Y such that
x,ye€ Z and (Z,Sn (2% 2)) is isomorphic to G;

2) the endomorphism monoid of (Y,S) is isomorphic to
M;

3) there exists no compatible mapping between them,

Moreover, there exist strong embeddings Yyt GRA —>»
—» GRAG41 = 1,2,... such that for every couple of graphs
(¥,8), (¥",S”) and for every 1+ j there exists no compatible
mapping £: ¥,(Y,S) —> wu(r',s').

Proof. This assertion is obtained by a suitable choice
of n, p, by Lemma 2 (Condition 6).
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