

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018 | log12

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

ITERATED ULTRAPOWER AND PRIKRY'S FORCING Lev BUKOVSKÝ, Košice x)

Abstract: It is shown that the factorization of the Boolean ultrapower $^{\rm B}{\lor}$ by a suitable ultrafilter $\overline{\mathcal{U}}$ is isomorphic to the Gaifman's direct limit of the iterated ultrapowers $\mathcal{N}_{\rm n}$, $n\in\omega_{\rm o}$, where B is the Boolean algebra of the Prikry's forcing. Moreover, the corresponding extension $^{\rm (B)}/\overline{\mathcal{U}}$ is isomorphic to the intersection $^{\rm (B)}/\overline{\mathcal{U}}$ is isomorphic to the intersection $^{\rm (B)}/\overline{\mathcal{U}}$

 $\underline{\text{Key words}}$: Iterated ultrapower, generic extension, forcing, measurable cardinal.

AMS: 02K05, 02K35

Ref. Z.: 2.641.3

In the note [1] I have shown that the intersection $\mathcal{N}=\sum_{m\in\omega_0}\mathcal{N}_n$ of n-th ultrapowers \mathcal{N}_n of the universe V is a generic extension of the Gaifman's direct limit \mathcal{N}_{ω_0} of \mathcal{N}_n , $n\in\omega_0$ (with corresponding elementary embeddings). Moreover, this generic extension possesses properties similar to those of the extension constructed by K. Prikry [4]. P. Dehornoy [2] has proved that actually \mathcal{N} is the generic extension of \mathcal{N}_{ω_0} by Prikry's forcing (constructed inside the model \mathcal{N}_{ω_0} .). In this note I will prove the same result

x) The result of this note has been presented on the Logic Colloquium, Clermont-Ferrand 1975.

by a method different from that of P. Dehornoy and obtain some additional information. Namely, I will prove the following theorem:

Let κ be a measurable cardinal, $\mathcal U$ being a normal measure on κ . Let B denote the complete Boolean algebra constructed from the Prikry's forcing. Let $\overline{\mathcal U}$ be the ultrafilter on B constructed from $\mathcal U$ by (3). Then

- i) the ultrapower ${}^{\rm B} {ee} / \, \overline{\mathcal{U}}$ is isomorphic to the model class $\mathcal{S}_{\omega_{+}}$,
- ii) the factorization $V^{(B)}/\overline{\mathcal{U}}$ of the Boolean-valued model $V^{(B)}$ is isomorphic to the intersection $\sum_{n \in \mathcal{U}_o} \mathcal{N}_n$ and
- iii) $_{m} \bigcap_{e} \mathcal{N}_{o} \mathcal{N}_{n} = \mathcal{N}_{\omega_{o}}[a]$, where the set a is a generic subset of the Prikry's forcing.

Terminology and notations are those of [1] and [3]. Howwever we remind some of them here.

If C is a complete Boolean algebra, $^{\mathbf{C}}_{\mathbf{V}}$ will denote the class of all functions f such that the domain $\mathcal{D}(\mathbf{f})$ of f is a partition of C (i.e. elements of $\mathcal{D}(\mathbf{f})$ are pairwise disjoint and the union of $\mathcal{D}(\mathbf{f})$ is 1). For any formula \mathcal{G} of the language of the set theory, one can define the Boolean value

$$|\varphi(f_1,...,f_n)|_{C} \in C$$

 $\mathbf{f}_1, \dots, \mathbf{f}_n \boldsymbol{\epsilon} \overset{\mathbf{C}}{\vee} \boldsymbol{\vee}$, in the obvious way, e.g.

 $| f_1 \in f_2 |_{C} = \bigvee \{ x \in C; (\exists u)(\exists v)(x \le u \& x \le v \& f_1(u) \in f_2(v)) \}.$ If V is an ultrafilter on C, we obtain the Boolean ultrapower $C \setminus V \setminus V$ defining the membership relation e_V as

follows:

The famous Loś-theorem says that

$$(1) \quad {}^{\mathsf{C}} \vee / \mathscr{V} \models \quad \mathscr{G}(\mathsf{f}_1, \ldots, \mathsf{f}_\mathsf{n}) \equiv | \mathscr{G}(\mathsf{f}_1, \ldots, \mathsf{f}_\mathsf{n}) | _{\mathsf{C}} \in \mathscr{V}.$$

The Boolean-valued model $V^{(C)}$ and the Boolean value $\|\varphi(f_1,\ldots,f_n)\|_{C}\in C$ are defined e.g. in [3]. If the ultrafilter V is G-additive, then one can define the interpretation i_{V} of $V^{(C)}$ as in [3], p. 58, by induction

Let $x \in V$. We set

$$\mathcal{D}(\hat{x}) = \{1\}, \hat{x}(1) = x.$$

Then $\hat{x} \in {}^{\mathbb{C}}V$. The function $\check{x} \in V^{(\mathbb{C})}$ is defined in [3], p. 53.

If $\mathcal V$ is $\mathfrak S$ -additive, then $^{\mathbb C} \vee / \mathcal V$ is well-founded and there exists an isomorphism $\psi_{\mathcal V}$ of $^{\mathbb C} \vee / \mathcal V$ onto a transitive class. One can easily define an embedding \times of $^{\mathbb C} \vee$ into $^{\mathbb C} \vee$ such that

$$\times$$
 (\hat{x}) = \hat{x}

for any x \in V . It is easy to see that for any f \in C V , the following holds true:

(2)
$$i_{\gamma}(X(f)) = \psi_{\gamma}(f).$$

Let κ be a measurable cardinal, $\mathcal U$ being a normal measure on κ . $\mathcal U_n$ denotes the ultrafilter $\mathcal U \times \ldots \times \mathcal U$ on κ . The set P of Prikry's conditions is defined as follows

(n = 0 is allowed!):

$$\begin{split} \mathbf{p} \in \mathbf{P} &= \mathbf{p} = \langle\langle \alpha_1, ..., \alpha_m \rangle, \mathbf{X} \rangle; \; \alpha_1 < ... < \alpha_m < \inf \mathbf{X}, \mathbf{X} \in \mathcal{U} \;, \\ \mathbf{p}' &= \mathbf{p}'' \geq \mathbf{m}'', \; \alpha_1' = \alpha_1'', ..., \alpha_m'' = \alpha_m'', \; \mathbf{X}' \subseteq \mathbf{X}'', \; \alpha' \in \mathbf{X}'' \\ \text{for } \mathbf{n}'' < \mathbf{i} \leq \mathbf{n}' \;. \end{split}$$

Let B denote the complete Boolean algebra containing P, \leq as a dense subset. We define $\widetilde{\mathcal{U}} \subseteq B$ by the condition

(3)
$$A \in \overline{\mathcal{U}} \cong (\exists X \subseteq \kappa)(X \in \mathcal{U} \& \langle \emptyset, X \rangle \in A).$$

K. Prikry [5] has proved that $\overline{\mathcal{U}}$ is a κ -complete ultrafilter on B.

Let $\kappa^{(n)}$ denote the set $\{\langle \xi_1, ..., \xi_m \rangle; \xi_1 < ... < \xi_m \in \kappa \}$. Evidently $\kappa^{(n)} \in \mathcal{U}_m$. For $\langle \xi_1, ..., \xi_m \rangle \in \kappa^{(m)}$, we set

$$P_{\xi_1,...,\xi_m} = \langle \langle \xi_1,...,\xi_m \rangle; \kappa - \langle \xi_m + 1 \rangle \rangle$$
.

The set $\{p_{\xi_1,...,\xi_m}; \langle \xi_1,...,\xi_m \rangle \in \kappa^{(m)} \}$ is a partition of the Boolean algebra B. By a simple computation one can prove for each $X \subseteq \kappa^{(n)}$ that

(4)
$$\bigvee_{\langle \S_{1}, \dots, \S_{m} \rangle \in X} \S_{1}, \dots, \S_{m} \in \widetilde{\mathcal{U}} \equiv X \in \mathcal{U}_{m}.$$

The set

$$B_{\mathbf{m}} = \{\langle \mathbf{x}_{1}, \dots, \mathbf{x}_{m} \rangle \in X \mid P_{\mathbf{x}_{1}, \dots, \mathbf{x}_{m}}; X \in \kappa^{(n)}\}$$

is a complete subalgebra of the Boolean algebra B. Evidently $B_n \subseteq B_{n+1}$. Moreover, B_n is atomic with the set $\{P_{\xi_1,\dots,\xi_m}: \langle \xi_1,\dots,\xi_m \rangle \in \kappa^{(n)}\}$ of atoms. Since $\kappa^{(n)} \in \mathcal{U}_n$, the mapping \mathcal{P}_n defined for $f \in \mathcal{P}_m \setminus \mathcal{U}_n$ as

$$g_m(f)(\langle \xi_1, ..., \xi_m \rangle) = f(p_{\xi_1, ..., \xi_m})$$

induces an isomorphism - denoted by the same letter \mathcal{P}_n - of $\mathbb{P}_{n \vee /\overline{\mathcal{U}}}$ onto $\mathbb{P}_n \vee \mathbb{P}_n$.

The inclusion $B_n \subseteq B_m$, $n \le m$ induces the natural embedding $B_n \lor / \overline{\mathcal{U}} \subseteq {}^{B_m} \lor / \overline{\mathcal{U}} .$

Let $j_{n,m}$ denote the natural embedding of $\sqrt[K^m]{u_m}$ into $\sqrt[K^m]{u_m}$. The transitive class \mathcal{N}_n is equal to

Since B_n⊆B, we can write

$$^{\mathsf{B}_{m}} \vee / \overline{u} \subseteq ^{\mathsf{B}} \vee / \overline{u}$$
.

We show that in fact

$$^{8}\sqrt{\bar{u}} = \bigcup_{n \in \omega_{0}}^{8_{m}}\sqrt{\bar{u}}.$$

Let $f \in {}^B V$. We can assume that $\mathcal{D}(f) \subseteq P$, i.e. that f is defined on the elements of P. Let

$$P_m = \{ \langle \langle \xi_1, ..., \xi_m \rangle, X \rangle \in P ; m = m \}$$
.

Then $\mathcal{D}(\mathbf{f}) = \bigcup_{m} (\mathcal{D}(\mathbf{f}) \cap P_{n})$ and also

$$1 = \bigvee \mathcal{D}(f) = \bigvee_{n} \bigvee (\mathcal{D}(f) \cap P_{n}).$$

Since $\overline{\mathcal{U}}$ is $\mathbf{6}$ -additive, there exists a natural number n such that

$$V(\mathcal{D}(\mathbf{f}) \cap P_n) \in \overline{\mathcal{U}}$$
.

If $p,q \in P_n \cap \mathcal{D}(f)$, $p \neq q$ then $p \wedge q = 0$. Thus, if $p = \langle\langle \xi_1, ..., \xi_m \rangle, X \rangle$, $q = \langle\langle \eta_1, ..., \eta_m \rangle, Y \rangle$, then

 $\langle \xi_1,..., \xi_m \rangle \neq \langle \eta_1,..., \eta_m \rangle$ (since otherwise $\langle \langle \xi_1,..., \xi_m \rangle, X \cap Y \rangle \leq p \wedge q$). We define $\overline{f} \in {}^{B_m}V$ as follows:

$$\overline{f}(p_{\xi_1,\dots,\xi_m}) = f(\langle\langle \xi_1,\dots,\xi_m \rangle, X \rangle) \text{ if } \\
\langle\langle \xi_1,\dots,\xi_m \rangle, X \rangle \in \mathcal{D}(f) \cap P_m \text{ for some } X, \\
= 0 \text{ otherwise.}$$

Evidently $\overline{f} \in {}^{\beta_m} \vee$ and

$$|f = \overline{f}|_{B} \ge V(P_{n} \cap \mathcal{D}(f)) \in \overline{\mathcal{U}}$$
.

From the definition of the direct limit of the system $V/U_m, j_{m,m}$ and from (5) we obtain a natural isomorphism \mathcal{C}_{ω_0} from $V/\overline{\mathcal{U}}$ onto $\lim_{m} \frac{\kappa^m}{V/U_m}$. If ψ_{ω_0} is the isomorphism of $\lim_{m} \frac{\kappa^m}{V/U_m}$ onto the transitive class \mathcal{N}_{ω_0} , then $\mathcal{C}_{\omega_0} \circ \psi_{\omega_0}$ is an isomorphism from $\frac{B}{V/\overline{\mathcal{U}}}$ onto \mathcal{N}_{ω_0} .

Since the interpretation $i_{\overline{\mathcal{U}}}$ of the model $\sqrt{\frac{B}{\overline{\mathcal{U}}}}$ maps the submodel $\sqrt{\frac{B}{\overline{\mathcal{U}}}}$ (more precisely, the submodel $\times \sqrt{\frac{B}{\overline{\mathcal{U}}}}$ onto a transitive class, one can easily see that

(6)
$$\times \circ i_{\overline{u}} = g_{\omega_0} \circ \psi_{\omega_0} ,$$

i.e., for fe BV we have

$$i_{\overline{\mathcal{U}}}(X(f)) = \psi_{\omega_o}(\wp_{\omega_o}(f)) \in \mathcal{X}_{\omega_o}$$
.

Let h ϵ V (B) be such that

$$\| h(\check{n}) = \check{\xi} \| = \bigvee_{\xi_1 < \dots < \xi_{m-1} < \xi} n_{\xi_1, \dots, \xi_{m-1}, \xi}$$

By an easy computation we obtain

(7)
$$i_{\overline{\mathcal{U}}}(h) = \{\langle m, \kappa_m \rangle; m \in \omega_0 \}$$

where $\kappa_m = \psi_{\mathcal{U}_m}(\widehat{\kappa})$ is the measurable cardinal in \mathcal{N}_n .

By K. Prikry [4], the generic extension $V^{(B)}/\overline{\mathcal{U}}$ of $V^{(B)}/\overline{\mathcal{U}}$ (more precisely, of $V^{(B)}/\overline{\mathcal{U}}$) is such that $V^{(B)}/\overline{\mathcal{U}} = V^{(B)}/\overline{\mathcal{U}}$ [h]. Thus, by (6) and (7) we obtain

(8)
$$i_{\overline{\mathcal{U}}}(\vee^{(8)}/\overline{\mathcal{U}}) = \mathcal{N}_{\omega_o}[\{\langle m, \kappa_m \rangle; m \in \omega_o \}].$$

In [1], we have proved, denoting $\{\langle m, \kappa_m \rangle; m \in \omega_0 \}$ by a, that

for every $n \in \omega_o$. Now, we shall show that also

(9)
$$\bigcap_{m} \mathcal{N}_{m} = \mathcal{N}_{\omega_{o}} [a] .$$

Using the theorem of R. Balcar and P. Vopěnka, [31, p. 38, it suffices to show that each $x \in \bigcap_m \mathcal{N}_m$, $x \subseteq On$ is an element of the class \mathcal{N}_{ω_n} [a].

We set

$$x_n = \{\xi; \gamma_{m,\omega_0}(\xi) \in X \}$$
.

Then

$$\nu_{m,\omega_o}(\mathbf{x}_n) \subseteq \mathbf{x}$$
.

Let $f_n \in {}^{B_m} \vee$ be such that $\psi_{\mathcal{U}_m}(\varphi_m(f_m)) = x_m$. One can easily construct functions $g_n \in {}^{B_m} \vee$, $n \in \omega_o$ in such a way that $f_1 = g_1$ and

By simple computation we have

$$\psi_m(\varphi_m(g_n)) = \mathbf{x}_n.$$

Now, we define $f \in V^{(B)}$ as follows:

$$f(\hat{\xi}) = \bigvee_{n} |\hat{\xi} \in q_{n}|_{B_{n}} \in B.$$

Then

$$i_{\overline{u}}(f) = x,$$

thus, by (8),

Let us remark that the model $V^{(B)}/\overline{\mathcal{U}}$ is well-founded, but $\overline{\mathcal{U}}$ is not generic ultrafilter. In fact, the existence of such a non-trivial well-founded (Boolean) model implies the existence of a measurable cardinal.

References

- [1] BUKOVSKf L.: Changing cofinality of a measurable cardinal (an alternative proof), Comment. Math. Univ. Carolinae 14(1973), 689-697.
- [2] DEHORNOY P.: Solution of a Conjecture of Bukovsky, C.R. Acad. Sci. Paris Sér.A, 281(1975), 821-824.
- [3] JECH T.: Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Lecture Notes in Mathematics, Springer 1971.
- [4] PRIKRY K.: Changing measurable into accessible cardinals, Dissertationes Math., Warszawa 1970.
- [5] : On 6-complete prime ideals in Boolean algebras, Colloq. Math. 22(1971), 209-214.

Universita P.J. Šafárika katedra matematiky Komenského 14, 04154 Kešice Československe

(Oblatum 15.11.1976)

