

Werk

Label: Article **Jahr:** 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0018|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,1 (1977)

ONE EXAMPLE CONCERNING TESTING CATEGORIES

Jiří ROSICKÍ, Brno

Abstract: It is shown that there is a complete, co-complete, extremally well- and co-well-powered category A which contains any one-object category as a full subcategory, but there is a small category not equivalent to a full subcategory of A.

Key words: Testing category, Mac Neille completion.

AMS: Primary 18B15 Ref. Z.: 2.726.3

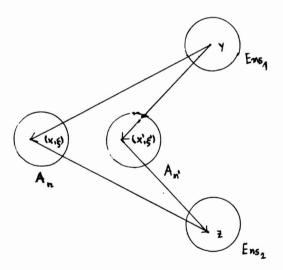
Secondary 18A35

The result stated in the abstract answers a question which naturally arises in the study of testing categories. Namely, under a mild set-theoretic assumption there is a two-object category full embeddability of which into a complete and extremally well-powered category A make any concrete category to be equivalent with a full subcategory of A. Further, for any set S of one-object categories there is a complete, co-complete, well- and co-well-powered category A which contains any category from S as a full subcategory, but there is a small category not equivalent to a full subcategory of A (see [3]). The last example is constructed by means of a suitable completion of a coproduct of categories

from S. I did not succeed in managing so with all one-ob-

ject categories. But one can make use of the Mac Neille completion of a faithful functor in the sense of [1]. The point of it is that the corresponding "Mac Neille completion" of a category C, i.e. a completion in which C is dense and codense almost never exists (see [2]). I hint at the fact that the category A which will be constructed is neither well-powered nor co-well-powered. It remains a question whether it is possible. A disadvantage of A is that it is not fibre small (A has a proper class of non-isomorphic structures on each underlying set x).

Let N be a category which has as components all oneobject categories and U: N \longrightarrow Ens be a functor such that the restriction of U on an object n of N is the hom-functor N(n,-). Let V: A \longrightarrow Ens be the Mac Neille completion of U. Then A looks as follows:



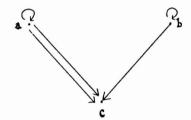
Morphisms $(x, \S) \longrightarrow (x', \S')$ in A_n are mappings $f: x \longrightarrow x'$ such that $gf \in \S$ for each $g \in \S'$. If n + n', then there is no morphism between objects of A_n and $A_{n'}$. Let $y \in Ens_1$, $x \in Ens_2$ and $(x, \S) \in A_n$. Then morphisms $y \longrightarrow (x, \S)$ and $(x \S) \longrightarrow x$ are mappings $y \longrightarrow x$ and $x \longrightarrow z$. So there is no morphism from Ens_2 to A_n and from A_n to Ens_1 . Morphisms in A compose as mappings and V is the obvious underlying functor.

It is easy to show that A is complete and cocomplete and that V preserves limits and colimits (after all it follows from [1]). Thus each category A_n is well- and co-well-powered. Let $y \in Ens_1$, $(x, \xi) \in A_n$ and $z \in Ens_2$. Any morphism $f: y \longrightarrow (x, \xi)$ can be factorized as $y \xrightarrow{f} x \xrightarrow{f_x} (x, \xi)$ and similarly any $g: (x, \xi) \longrightarrow z$ as $(x, \xi) \xrightarrow{f_x} x \xrightarrow{g} z$. Hence f cannot be extremally epi and g extremally mono. Thus A is extremally well- and co-well-powered.

Following [1] there is a full embedding Y: N \longrightarrow A. It suffices to put Yn = (Un, {Uf/f: n \longrightarrow n }) and Yh = Uh. Let $(x, \xi) \in A_n$, $f \in \xi$ and $g \in \eta_{\xi}$. Then $f: (x, \xi) \longrightarrow$ Yn and

g: $Yn \longrightarrow (x, \xi)$ are morphisms in A_n . So for any $(x, \xi) \in A_n$ such that $\emptyset \neq \xi + (Un)^x$ there are morphisms $Yn \longrightarrow (x, \xi) \rightarrow Yn$.

Suppose that the following category is a full subcategory of A (there are indicated non-identical morphisms)



Since a, b have exactly two endomorphisms, they differ from objects of the type (x, ϕ) or $(x, (Un)^X)$. Hence a, b do not belong to the same A_n because otherwise it would be a morphism $a \longrightarrow Yn \longrightarrow b$. Thus $c \in Ens_2$. Since c has exactly one endomorphism, c equals to ϕ or 1. But now one cannot have two morphisms from a to c.

We have shown that A has the desired properties.

References

- [1] H. HERRLICH: Initial completion, Kategorienseminar Hagen 1976, 3-26.
- [2] J.R. ISBELL: Subobjects, adequacy, completeness and categories of algebras, Rozprawy Matematyczne 34(1964), 1-33.
- [3] J. ROSICKÝ: Codensity and binding categories, Comment.

 Math. Univ. Carolinae 16(1973), 515-529.

Přírodovědecká fakulta UJEP Janáčkovo nám.2a, 66295 Brne Československo

(Oblatum 1.11.1976)