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REMARKS ON THE SOLVABILITY AND NONSOLVABILITY OF WEAKLY
NONLINEAR EQUATIONS 1’
Svatopluk FUEIK , Prahe

Abstract: The existence of the solution of the nonli-
near operator equation
Ax + «Sx*- fSx" +Gx = ¢

(where A is a Fredholm linear selfadjoint noninvertible
operator in a regl semiordered Hilbert space X , S is g
linear completely :continuous operator in X , G is a non-
linear mapping in- X , for x€X it is x+ = mex (x,0) ,
x =x% - x— ) is studied.

Key words: Nonlinear operator equation, solvability,
nonsolvability, multiplicity of solutions.

AMS: 4TH15 Ref. Z.: 7.978.53

1, Assumptions, Notations. Until further comment,
X, 2 will denote real Hilbert spaces with norms x|l ,
lzll, , respectively. The inner product in X is denoted
by (xl,xz.) .

A subset C of 2 is called a cone if it is closed,
convex, invariant under multiplication by nonnegative num-
bers, and if CA(-C) = £ 0% .

1) The results contained in this note were first presented
by the author at the Summer School on "Nonlinear Analy-
sis and Mechanics",September 1974, Staré Lesnd near Po-
prad,Slcvakia, and they are announced without the proofs
in the third part of the paper [71].
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Let C be a given cone in Z with the following
properties:

(z 1) If zeZ then there exists a uniquely deter-
mined couple z¥, z”eC such that z = z¥ -z2" .

(z 2) The mappings 2z V> z*., Z+> 2z~ are lip-

schitzian, i.e., there exists @ > 0 such that
ﬂz:- z‘g“z é @“zl - zznz ’ “ z-]-. - 2—2,- “z é @“ zl - zz“ A

for each 1z, zzeZ .

(2 33 Xe?Z and the identity mapping from X into
7 4s contimious. Denote by # 1ts norm.

(A1) Let A be a linear bounded selfadjoint opera-
tor from X into X with a closed range R(A) and finite-
dimensional null-space N(A) , dim N{Al2 1 .

Let P be the orthogonal projection from X onto
N(A) and let¢ Q=TI ~-P ( I is the identity operator in
X)), i.e., Q 1s the orthogonal projection from X onto
R(A) . Under our assumptions there exists a linear continu-
ous map (the so-called right inverse) M: R(A)—> R(A) sa-
tisfying

MAx = Qx (xeX) ,

aMy =y (yeR(n) .
Denote by AMIl the norm of M.

Let S be a linear continuous mapping from 2Z into
C with the norm NSl and suppose:
(S 1) The mappings x +— Sx*, x —> Sx~ are comp=

letely continuous operators from X into X.
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2. Fipst result

Lemmg 1, Let «, 3 be real numbers and suppose
that '

( S+A- h ™~ h o
s 2} kigfmm(«.h - 3Sh~ ,h)>0

14 g =4
Then Jdy(ec,3)>0 , where

d;(oc,ﬂ) ={sup &2 0; inf (cS(h + )t -

inf
ar e R(AY H e N(A)
l\nrl!xéd" Ilhllxrf

- As(h+v)” ,n)>0} .
Proof. Suppose that there exists dj > O,a}’glmd"mﬁ
=0, and vyeRA) , llvylly&d, , nena), Injily=

=1, such that
+ =~ =
”&}’m’o(acs(hn +v))T - @S(hy + v))” ,h) =0,

Since N(A) 1is finite-dimensionsl, we can suppose that the
sequence hn converges in the norm topolngy of X to
hoeN(a) , In Il =1 . The continuity of S and the
assumption (Z 2) imply

+ o - =
(ecsh ] (3 Shy ’ho) =0
which contradiets (S 2).

Theorem 1. Let o, 3 be real numbers. Suppose
(z1) -(z23), (A1), (s 1), (S 2). Moreover, suppose that

(G1) G: X~>X is a completely continuous opera-
tor such that '

(G 2) sup lGxly < @ .
x&p}( X
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Then the equation
(1) Ax + aSx¥ - ASx  +Gx=¢

43 solvable in X for each ZfeX provided
de (¢, 3)
1+ dy (e, )

Proof. According to [4, Theorem 1] it suffices to
verify the following condition:

(el + 1pD SN < it

For any K>O we have tK>0 such that

(2) (e«sS(t(h + v)¥) - Bs(t(h +v)7),h) +

+ (G(t¢n + v)),h} 2K

for all tZty , heN@a) , Inly=1, veR(a) , lvligsd,
where J" < J,(«,B) .

The assumptions (S 2),(G 2) and Lemma 1 immediately
imply (2).

Repark 1. The assumption (G 2) may be (without chan-
ging the proof) replaced by the growth condition [IGx Ny £
&
ey + cpllx g, where & €40,1) . If the constant c,
is sufficiently small, then it may be & =1 and the

same assertion as in -Theorem 1 is valid.

Remark 2. Suppose, moreover,

(A 2) dim N(A) =1
and N(A) 1is a linear hull of h X, lh, ly=1.

If we suppose

+ - -

(s 3) (Sho,ho) == (sno,ho)*o
then dol o, 3} = &,(1,0) and if ¢4 — (3 then the condi-
tion (S 2) is fulfilled.
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3. Second res
Lemma 2. Let «, (3 be real numbers and suppose
(A 1),(A 2) and
(ecShy = (BShy ,h )70
wo |

. =
(@Shy = «Shy ,h )40 .

Then dJd;(wx,3)>0 , where

zZ0; (S(h_ + ¥ =
oup {0 E 0 R °
Bsthy + v)",h )>0 and

d; (e, (3)

+ - T »
”es‘i‘énc(“(ho + v) «Sthy + v)7,h )<0%

|l'v'||xﬁd'
(The proof is quite snalogous of that in Lemma 1.)
Theorem 2. Let <, 3 be real numbers and suppose:

(21) - (2 3), (A1),(A 2),(S 4). Let G: X—>X be & lip-
schitzian mapping, i.e. there exists c¢>0 such that

(G 3) llle-zenxﬁc ||x1-x2|lx.
for each x, X5 € X . Suppose (G 2).

ir
) k=llull Celislhg (1l + 181) +)e1

i)

(4) < d; (x,f3) y

then there exists a lower semicontinuous function T :

: R(A) —> (- ,00) , bounded from below on bounded sub-
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sets of R(A) and with _the following properties:
a) The equation (1)} has a solution for the right
hand side feX if and only if
(£,n,} z T (Qo) .

b} The equation (1) has at least two solutioms for
the right hand side fe X provided

(£,n)) > T (Qf) .

Th 2

Step 1. For fixed te(~co,0) = R) and feX define the
mapping
Py gt R(A) —> R(A)
by
Fy gt v > = B (xS(thy + v)¥ = @S(thy + v)7 +
+ &lthy +v) - 2) .
With respect to (3) the mapping Ft,f is lipschitzian

with the constant k<1 and thus according to the Banach's

contraction mapping principle there exists a unique fixed
point vt,fER(A) of N"’f e

Step 2. For all tl, tze Ry and fl’- fzc-x we obtain
{by an easy calculation)
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Step 3. Define
Bt t > PleSlthy + vy % = @S(thy + vy )7+
+ G(th, + vt’f)).
The equation (1) with the right hand side feX has a so-

lution xoex if and only if there exists toeRl such
that

(5) $o(t,) = Pt .

Step 4, Since vy =V op and N(A) is one-dimensio-
nal, the equation (5) is equivalent with

(6) (t) (£,h)

where

(7 Pget tH> ( Delt),n )

Step 5. For fixed feX the function ¥qe 1s continuous

on Rl and, moreover:

lim (t) = o0
It| —e ‘?Qf
(it follows from the inequalities

Yie o+ Vi E -
Pap(t) EL (ot S(h, + -—tl-— )T = Bs(n, + —-t'-— ) ,ho) -
- xsgpxllGx llx if t>0 ,

v, . v -
FoeIZ-t (Bshy + —25 )% - wsny + —2& )" n) -
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- sup llexlly if t<oO
<eX X
and from (S 4),(4), Lemma 2 and Step 2).

Step 6. Define
rae) = m (t) .
t€21 ?Qf

The assertions of Theorem 2 follow now immediately from

Steps 5,3,4 .

Remerk 3. If (sh¥,h )24 (shj,h )2 then there ex-
ist o, (3 € R} satisfying (s 4).

Remark 4. Note that the typical example cf the equa-
tion (1) is the boundary value problem for nonlinear elli-
ptic partial differential equation of the order 2m (see
{71). In this case we put X = wﬁ’z(fl) (the well-known
Sobolev space) and 2 = L,({l) . In the case of.second or-=
der partial dirferential equations it is possible to put
X=2= W%’z(ll) . In both cases C may be the set of all

almost everywhere nonnegative functions from 2 .

Remar . The second order ordinary diiferential e-
quations of the type (1) are investigated in [6). The ge-
neralization of the results from [6] as well as the study
of periodic problems and partial difterential equations

of second order is in [2, 31.

Remark 6. The analogous result as in Theorem 2 is
proved in [1, 5] for partisl dirferential equations of the
second order in the cnase that h° is a nonnegative func-
tion. In this note the condition " hoé() " is replaced

by (S 4) (and, of course, the abstract consideration is
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useful for higher order equations). A, Ambrosetti communi-

cated me that E. Podolak (Princeton University) prepares

the mamuscript in which the condition " ho_Z_O " 1is repla-
ced in the case of second order partial differential equa-
tions by
+ 2 = 2
Jo (b ?ax + [ (0o (x))%ax .
But in all previous papers (also in the present note) for
the method of proofs it is essential that dim N(a) =1 .
The observation of the analogous problems as in Theorem 2
but in the case of dim N(A)>1 is a terra incognita by
the author’s best knowledge.
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