

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,1 (1976)

ON THE LOCAL ERGODIC THEOREMS OF KRENGEL, KUBOKAWA, AND TERRELL x)

S.A. MCGRATH, Annapolis

Abstract: Let (X, Σ, ω) be a δ -finite measure space and $\Gamma = \{T_t : t \geq 0\}$ a strongly continuous semigriup of positive $L_p(\omega)$ operators, $1 \leq p < \infty$. We present direct proofs of Krengel's and Kubokawa's local ergodic theorems using a method which easily extends to the case of n-parameter semigroups. The result obtained in the n-parameter case generalizes a theorem of T.R. Terrell.

 $\underline{\underline{\text{Key words}}}\colon \text{Local ergodic theorem, semigroups of positive} \ L_p$ operators, strongly continuous semigroups, n-perameter semigroups.

AMS: Primary 47A35, 47D05 Ref. Z.: 7.977 Secondary 28A65

Introduction. Let (X, Σ, μ) be a \mathcal{E} -finite measure space and $1 \neq p \neq \infty$. Denote by $L_p(\mu)$ the usual Banach spaces of complex-valued functions. Let $\Gamma = \{T_t \colon t \geq 0\}$ be a strongly continuous semigroup of bounded $L_p(\mu)$ operators. This means that (i) $\|T_t\|_p < \infty$, $t \geq 0$; (ii) $T_{s+t} = T_s T_t$; (iii) $\|T_t f - T_s f\| \to 0$ as $t \to s$ for all $f \in L_p(\mu)$. We say that T_t is positive if $f \in L_p^+(\mu) \Longrightarrow$

x) Research supported by a Naval Academy Research Grant

 $\Longrightarrow T_t f \in L_p^+(\mu) \quad \text{and that} \quad T_t \quad \text{is a } \underline{\text{contraction}} \quad \text{if} \quad \|T_t\| \leq 1 \quad \text{We assume} \quad T_0 = I \quad \text{, although the results obtained hold when} \quad T_0 \neq I \quad \text{if appropriate modification is made. For a strongly continuous} \quad L_p(\mu) \quad \text{semigroup} \quad \Gamma \quad \text{and} \quad f \in L_p(\mu) \quad \text{, we set}$

 $A(\varepsilon,T)f(x) = (1/\varepsilon) \int_{0}^{\varepsilon} T_{t}f(x)dt$

for $\varepsilon > 0$. We say that the <u>local ergodic theorem</u> (L.E.T.) holds for Γ if

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T) f(x) = f(x) \quad \text{a.e.}$$

for $f \in L_p(\mu)$. Let us clarify the definition of $A(\epsilon,T)f(x)$. The strong continuity of Γ ensures that the vector-valued function $t \longrightarrow T_t f$ is Lebesgue integrable over any finite interval (a,b), $0 < a < b < \infty$. It follows: [4, p.196] that for each $f \in L_p(\mu)$, $1 \le p < \infty$, there exists a scalar function g(t,x) on $[0,\infty)\times X$, measurable with respect to the usual product 6-field, which is uniquely determined up to a set of measure zero in this space by the conditions:)i) for a.e.t. ≥ 0 , g(t,.) belongs to the equivalence class of $T_{\mathbf{t}}f$, (ii) there exists a ω -null set E(f), independent of t, such that $x \notin E(f)$ implies g(.,x) is Lebesgue integrable over every (a,b), 0<a<b< $< \infty$, and $\int_a^b g(t,x)dt$ belongs to the equivalence class of $\int_{a}^{b} T_{t} f dt$. The function g(t,x) is called the scalar representation of T_tf . We define $T_tf(x) = g(t,x)$. This justifies the definition of $A(\mathfrak{E},T)f(x)$. We note that for $x \notin E(f)$, A(E,T)f(x) is a continuous function of

In [6] U. Krengel established the L.E.T. for Γ a

strongly continuous semigroup of positive L1(m) contractions. This result was obtained independently by D.S. Ornstein [11]. T.R. Terrell [12] generalized the Krengel-Ornstein theorem to the case of n-parameter semigroups of positive $L_1(u)$ contractions, n>1 . The proofs given were indirect and Terrell's method was completely different from Krengel's. In [7, 8], Y. Kubokawa extended Krengel's theorem to the case where Γ is a semigroup of positive $L_n(\omega)$ operators for some $1 \le p < \infty$. His proofs depended on a maximal ergodic inequality for P which he derived in [7]. In this paper we obtain the theorems of Krengel, Ornstein, and Kubokawa by direct proofs utilizing a technique which easily extends to the n-parameter case. The n-parameter result obtained generalizes Terrel's theorem. We remark that M.A. Akcoglu and R.V. Chacon [2] proved the L.E.T. for the case when Γ is a semigroup of positive $L_1(\omega)$ contractions without assuming Γ to be strongly continuous at t = O . Also Kubokawa [9] established the L.E.T. for T a semigroup of not necessarily positive $L_1(\omega)$ contractions.

<u>Main results</u>. We establish two preliminary lemmas. In [13 , p.232] it is shown that if Γ is a strongly continuous semigroup then there exist M>0, $a\geq 0$ such that $\|T_t\| \leq Me^{at}$, $t\geq 0$. For $T_t \in \Gamma$ we set $S_t = e^{-bt}T_t$ for some fixed b>a. We assume henceforth that <u>all semi-groups are strongly continuous for all</u> $t\geq 0$.

1. Lemma. Let Γ be a semigroup of positive $L_p(\mu)$

operators for some $\,\, 1 \! \leq \! p \! < \! \, \infty \,\,$. For $\,\, f \! \in \! L_p(\mu) \,\,$ the following are equivalent:

- (i) $\lim_{\varepsilon \to 0+} A(\varepsilon,T)f(x) = f(x)$ a.e.
- (ii) $\lim_{\varepsilon \to 0+} A(\varepsilon, S)f(x) = f(x)$ a.e.

Proof. It is sufficient to establish the lemma assuming $f\in L_p^+(u) \ . \ \mbox{Suppose (i) holds. Since} \ \ S_tf(x)\leq T_tf(x) \ \ \mbox{for all} \ \ t\geq 0 \ , \ \mbox{we have}$

 $\lim_{\varepsilon \to 0+} \sup A(\varepsilon,S) f(x) \leq f(x) \quad \text{a.e.}$

Given $0 < \varepsilon < 1$ there exists $\sigma > 0$ sufficiently small that $e^{-bt} > 1 - \varepsilon$ for $0 < t < \sigma$. Then

 $\lim_{\alpha \to 0+} \inf A(\alpha,S) f(x) \ge (1-\varepsilon) f(x) \quad a.e.$

Since ε is arbitrary we have $\lim_{\alpha \to 0+} A(\alpha,S)f(x) \ge f(x)$ a.e. Thus $\lim_{\epsilon \to 0+} A(\epsilon,S)f(x)$ exists and equals f(x) a.e. So $(i) \Longrightarrow (ii)$. Thus proof of the converse is similar. Q.E.D.

2. Lemma. Let Γ be a semigroup of positive $L_p(\mu)$ operators for some $1 . There exists <math>0 < h \in L_p(\mu)$ such that if we set $m(A) = \int_A h^D d\mu$, $A \in \Sigma$, and $P_t f = S_t(fh)/h$ for $f \in L_p(m)$ then P_t can be extended by continuity to an $L_1(m)$ operator and $\Gamma' = \{P_t \colon t \ge 0\}$ becomes a strongly continuous semigroup of positive $L_1(m)$ contractions.

Proof. We only sketch the proof since the lemma appears in [10]. Since $\{S_t^*\}$ is a weakly continuous semigroup on $L_q(\mu)$, where q=p/(p-1), and $L_q(\mu)$ is reflexive, it follows that $\{S_t^*\}$ is strongly continuous. Set $g=\int_0^\infty S_t^* g' dt$ for some $0 < g' \in L_q(\mu)$. Then $g \in L_q(\mu)$,

g>0 a.e., and $S_t^* g \leq g$ for all $t \geq 0$. Set $h=g^{1/(p-1)}$. Then Γ' is a strongly continuous semigroup of positive $L_p(m)$ operators. Since $P_t^*(1)=S_t^*(g)/g \leq 1$ it follows that $\|P_t^*\|_{\infty} \leq 1$ and, consequently, that P_t can be extended by continuity to an $L_1(m)$ contraction. It is easy to show that Γ' , regarded as an $L_1(m)$ semigroup, is strongly continuous. Q.E.D.

We remark that the lemma in [10] is more general than our lemma 2 in that it includes the case p=1. It seems best in this paper to consider the case p=1 in the proof of theorem 4 since by so doing it is easier to see how to prove the n-parameter extension of this theorem for the case p=1. We now prove Krengel's and Ornstein's L.E.T. and then use it to establish Kubokawa's theorems.

3. Theorem (Krengel, Ornstein). Let Γ be a semigroup of positive $L_1(\mu)$ contractions. Then the L.E.T. holds for Γ

Proof. For $0 < g \in L_1(u)$ set $h = \int_0^\infty S_t g(x) dt$. Then $0 < h \in L_1(u)$ and

$$S_{th} = \int_{t}^{\infty} S_{r}g dr \leq \int_{0}^{\infty} S_{r}g dr = h(x)$$

for all $t\geq 0$. Setting $m(A)=\int_A h \ d\mu$ and $P_t f=S_t(fh)/h$ for $f\in L_1(m)$, we have $P_t(1)\neq 1$ a.e. which implies $\|P_t\|_\infty \neq 1$, $t\geq 0$. It is easy to check that $\|P_t\|_1 \neq 1$ also. By [4, p. 691] we have for $f\in L_1(m)$ and $\beta>0$,

$$m\{f^* > \beta\} \leq (K/\beta) \int |f| dm$$
,

where $f^* = \sup_{\varepsilon > 0} |A(\varepsilon,P)f(x)|$ and K > 0 is independent of f and $\Gamma' = \{P_t\}$. We see therefore that $f^* < \infty$ a.e. Now the class $M = \{A(\varepsilon,P)f\colon 0 < \varepsilon < 1 \ , \ f \in L_1(m)\}$ is dense in $L_1(m)$ and the L.E.T. holds for Γ' if $f \in M$ [6]. As was noted above, $A(\varepsilon,P)f(x)$ depends continuously on ε for x outside some null set. Thus it follows from Banach's convergence principle [4, p. 332] that $\lim_{\varepsilon \to 0+} A(\varepsilon,P)f(x)$ exists and is finite a.e. on X for all $f \in L_1(m)$. Since $A(\varepsilon,P)f \to f$ in norm, we have $\lim_{\varepsilon \to 0+} A(\varepsilon,P)f(x) = f(x)$ for $f \in L_1(m)$.

It is easy to check that for $f \in L_1(u)$ and $\epsilon > 0$ we have $A(\epsilon, S)f = [A(\epsilon, P)(f/h)] \cdot h$. Thus by lemma 1,

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T) f(x) = \lim_{\varepsilon \to 0+} A(\varepsilon,S) f(x)$$

$$= \lim_{\varepsilon \to 0+} [A(\varepsilon,P)(f/h)(x)] \cdot h(x)$$

$$= (f/h)h(x)$$

$$= f(x) \text{ a.e. Q.E.D.}$$

4. Theorem (Kubokawa). Let Γ be a semigroup of positive $L_p(\omega)$ operators for spme $1 \not= p < \infty$. Then the L.E.T. holis for Γ .

Proof. Assume first that p>1. Then by lemma 2 and theorem 3 we have the L.E.T. holding for the $L_1(m)$ semigroup $\Gamma'=\{P_t\}$, where P_t is defined as in lemma 2. For $f\in L_p(\mu)$ we have $f/h\in L_p(m)\subset L_1(m)$ since $m(X)<\infty$. Thus

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T)f(x) = \lim_{\varepsilon \to 0+} A(\varepsilon,S)f(x)$$

$$= \lim_{\varepsilon \to 0+} [A(\varepsilon,P)(f/h)(x)] \cdot h(x)$$

Now consider the case p=1. Assume momentarily that $\|T_t\|_1 \leq M$, $\|T_t\|_{\infty} \leq M$, $t \geq 0$, and $\mu(X) < \infty$. It is easy to show that Γ is a strongly continuous semigroup of positive $L_p(\mu)$ operators for any given $1 (see [4, p. 689]). Since <math>1 \in L_q(\mu)$ we may set $g = \int_0^\infty S_t^*(1) \, dt$. One sees that $g \in L_\infty(\mu)$. We set $h = (g)^{1/(p-1)}$ and define m and P as before. For $f \in L_1(\mu)$, $f/h \in L_1(m)$ since

Since the L.E.T. holds for {P+} we have

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T)f(x) = (f/h)h(x) = f(x) \quad a.e.$$

for fe L1 (u).

In the general case when p=1, we pick $0 < g \in L_1(\omega)$ and define $h=\int_0^\infty S_t g \ dt$. Setting $m(a)=\int_A h \ d\omega$, $P_t f=S_t(fh)/h$, $f \in L_1(m)$, we have $\|P_t\|_1 \le M$, $\|P_t\|_\infty \le 1$, $t \ge 0$, and $m(X) < \infty$. The special case considered in the preceding paragraph can now be applied to $\{P_t\}$ and we have

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T) f(x) = f(x) \quad \text{a.e.}$$
 for $f \in L_1(\mu)$. Q.E.D.

The N-parameter case . The following theorem is an extension of Terrell's result. In order to simplify the notation we consider the case where Γ is a semigroup depending on two parameters. The extension to the general case is imme-

diate. For $\mathbf{f} \in \mathbf{L}_{\mathbf{p}}(\omega)$ and Γ a 2-parameter semigroup of $\mathbf{L}_{\mathbf{p}}(\omega)$ operators, we set

$$A(\varepsilon,T)f(x) = (1/\varepsilon^2) \int_0^\varepsilon \int_0^\varepsilon T(s,t)f(x) dsdt,$$

where T(s,t)f(x) is a scalar representation of T(s,t)f. The definition of $A(\epsilon,T)f(x)$ in the n-parameter case is completely analogous. As in the one-parameter case there exist M>0, a≥0 such that $\|T(s,t)\|_p \leq Me^{A(s+t)}$, s, t≥ ≥ 0 . For fixed b>a, we set $S(s,t) = e^{-b(s+t)}T(s,t)$.

5. Theorem. Let Γ be an n-parameter semigroup of positive $L_p(\mu)$ operators for some $1 \le p < \infty$. Then the L.E.T. holds for Γ , i.e. $A(\epsilon,T)f(x) \longrightarrow f(x)$ a.e. as $\epsilon \longrightarrow 0+$ for $f \in L_p(\mu)$.

Proof. We first establish Terrell's result. For $0 < g \in L_1(\omega)$ set $h = \int_0^\infty \int_0^\infty S(s,t)g(x)ds dt$. Then $0 < h \in L_1(\omega)$ and $S(s,t)h \neq h$ for all $s, t \geq 0$. Defining $m(A) = \int_A hd(\omega)$ and P(s,t)f = S(s,t)(fh)/h for $f \in L_1(m)$, we have $\|P(s,t)\|_1 \neq 1$, $\|P(s,t)\|_{\infty} \neq 1$, $s, t \geq 0$. By [4, p.697] we have for $\beta > 0$,

$$mif* > \beta$$
 $if (K_2/\beta) \int | f | dm$,

where $f^* = \sup_{\varepsilon > 0} |A(\varepsilon,P)f(x)|$ and K_2 is independent of f and $\{P(s,t)\}$. Thus $f^* < \infty$ a.e. Since the class $M = \{A(\varepsilon,P)f: 0 < \varepsilon < 1, f \in L_1(m)\}$ is dense in $L_1(m)$ and the L.E.T. holds for $f \in M$ (see [12] for a proof), we may apply Banach's convergence principle again to obtain

$$\lim_{\varepsilon \to 0+} A(\varepsilon, P) f(x) = f(x) \text{ a.e.}$$

for $f \in L_1(m)$. Since lemma 1 clearly extends to the n-parameter case, we have

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T)f(x) = \lim_{\varepsilon \to 0+} A(\varepsilon,S)f(x)$$
$$= (f/h)h(x)$$
$$= f(x) \text{ a.e.}$$

for $f \in L_1(\omega)$. This proves the theorem for the case p = 1 and $||T(s,t)|| \le 1$.

We now consider the case where T(s,t) is not necessarily a contraction. We assume p>1. Set $g=g=\int_0^\infty \int_0^\infty S^*(s,t)g'$ dadt for some $0 < g' \in L_q(\iota_L)$. Then

$$S*(x,t)g = \int_{s}^{\infty} \int_{t}^{\infty} S*(u,v)g' dudv \leq g$$

for any s, t \geq 0. We set $h=g^{1/(p-1)}$, $m(A)=\int_A h^p \, d\mu$, and $P(s,t)f=\lceil S(s,t)(fh) \rceil/h$ for $f\in L_p(m)$. As in the 1-parameter case, we have $\|P(s,t)f\|_1 \neq \|f\|_1$ for any $f\in L_p(m)$ from which it follows that P(s,t) can be extended to a positive $L_1(m)$ contraction. It is easy to show that $\{P(s,t)\}$, regarded as a $L_1(m)$ semigroup, is strongly continuous. For $f\in L_p(\mu)$, $f/h\in L_p(m)$. So

$$\lim_{\varepsilon \to 0+} A(\varepsilon,T)f(x) = (f/h)h(x) = f(x) \quad a.e.$$

The case p = 1 may be handled as in the proof of theorem 4. This concludes the proof.

<u>A conjecture</u>. As a final remark we make the following conjecture concerning an extension of theorem 5. We state our conjecture for the case n=2 to simplify the notation. For ϵ , $\sigma > 0$ and $f \epsilon L_p(\mu)$, set

 $A(\varepsilon, \sigma', T)f(x) = (1/\varepsilon\sigma') \int_0^\varepsilon \int_0^{\sigma'} T(s, t)f(x) ds dt ,$

where $\{T(s,t)\}$ is a semigroup of positive $L_p(\mu)$ operators. We conjecture that if $1 , then <math>A(\epsilon,\sigma,T)f(x) \longrightarrow f(x)$ a.e. as $\epsilon,\sigma \longrightarrow 0+$ independently. If M=1, i.e. $\|T(s,t)\|_p \le e^{a(s+t)}$ then the conjecture is true since then $\|S(s,t)\|_p \le 1$, for $s,t \ge 0$ and consequently $\|f^*\|_p \le (p/p-1)\|\|f\|_p$, where $f^*=\sup_{\epsilon,\sigma>0} |A(\epsilon,\sigma,S)f(x)|$. This estimate for f^* can be obtained using a result in [1]. Upon applying Banach's theorem to $A(\epsilon,\sigma,S)f(x)$, we get

 $\lim_{\varepsilon, \ \sigma \to 0+} A(\varepsilon, \sigma, T) f(x) = \lim_{\varepsilon, \ \sigma \to 0+} A(\varepsilon, \sigma, S) f(x) = f(x) .$

It is well known (see [3,12]) that the conjecture is false if p=1. Thus it does not appear that the problem may be resolved by using the main technique of this paper, i.e. by introducing the semigroup $\{P(s,t)\}$ of $L_1(m)$ contractions.

References

- [1] M.A. AKCOGLU: A pointwise ergodic theorem in L_p spaces, Canad.J.Math. (to appear).
- [2] M.A. AKCOGLU and R.V. CHACON: A local ratio theorem, Canad. J. Math. 22(1970), 545-552.
- [3] H. BUSEMANN and W. FELLER: Zur Differentiation der Lebesgueschen Integrale, Fund. Math. 22(1934), 226-256,
- [4] N. DUNFORD and J.T. SCHWARTZ: Linear Operators, part I, Interscience, New York, 1958.
- [5] E. HILLE and R.S. PHILLIPS: Functional Analysis and Se-

migroups, rev.ed., Amer. Math. Soc., Providence, RI, 1957.

- [6] U. KRENGEL: A local ergodic theorem, Inventiones Math. 6(1969), 329-333.
- [7] Y. KUBOKAWA: A general local ergodic theorem, Proc. Japan Acad. 48(1972), 361-465.
- [8] : A local ergodic theorem for semi-groups on L_p, Tohoku Math. J. 26(1974), 411-422.
- [9] : Ergodic theorems for contraction semigroups, J. Math. Soc. Japan 27(1975), 184-193.
- [10] S.A. MCGRATH: A pointwise Abelian ergodic theorem for $L_{\rm p}$ semigroups, $1 \le p < \infty$, to appear.
- [11] D.S. ORNSTEIN: The sums of iterates of a positive operator, Advances in Probability and Related Topics, vol. 2 (edited by P. Ney), 87-115, Dekker, New York, 1970.
- [12] T.R. TERRELL: Local ergodic theorems for n-parameter semigroups of operators, Contributions to Ergodic Theory and Probability, 262-278, Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- [13] K. YOSIDA: Functional Analysis, 1st ed., Springer-Verlag, 1965.

Department of Mathematics
U.S. Naval Academy
Annapolis, Maryland 21402
U.S.A.

(Oblatum 26.6.1975)

.