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QUASI-ENTROPY OF FINITE WEIGHTED METRIC SPACES
Miroslav KATETOV, Praha

Abstract: The note contains a proof of the possi-
bility to extend the notion of the entropy (in the clas-
sical sense) to finite sets endowed, besides a probabi-
lity distribution, with a semimetric.

suben%ze-xop;udsz Quas'i-entropy, semimetric, projective

AMS: 94415 Ref. Z.: 8,721

In various questioms it is useful to possess a func-
tion which is defined for an appropriate class of proba-
bility distributions on semimetric spaces and has some ba-
sic properties of the entropy in the classical sense. In
this note, a construction (in a broad sense of the word)
of a function of this kind for finite spaces is given.
Possibly, the method, particularly suitable generaliza-
tion of c.d.e,(see 3.2), may also work in a more general
situation.

It seems that some concepts introduced below, though
rather natural and virtually known, have not been examin-
ed in the setting presented here. Hence, definitions are
given starting from the most elementary ones. On the ot~

her hand, details of proofs are omitted.
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Concerning the entropy, we presuppose the elementa-
ry facts only; of the semimetric spaces as good as nothing

is assumed. Therefore, no references are given.

l.1. Besides a few deviations, we use the standard
terminology and notation. Parentheses are omitted whenever
possible: e.g. £x stands for f(x). Symbols like {xa: acA}
stand for sets, (xa: a€ A) for indexed sets. The following
letters, possibly with subscripts, etc., designate objects
of a specified kind: D,K,Q,T stand for finite non-void sets,
P,S for spaces (see 1.3), ¢ , 6 for semimetrics (1.2), “,
» for weights (1.2). The cardinality of T is denoted by
IT! ,A function is a mapping into R (the real line). If x is
a segment of a string y, we write x< y. Conventions: log

means log,; 0/0 = 0; 0 1log O = O.

l.2. By definition, a semimetric on T is a function
@ on TxTR such that @ (x,y) =0, ¢ (xy) = @(y,x)Z0,
& weight function (or simply a weight) w on T is a meesu-
re on T, (Observe that e (x,y) may be interpreted e.g. as
difficulty or as importance of distinguishing x, y, or el-
se as the "cost" of finding out, given t e {x,y3 , whet-
her t = x or t = y.) Symbols such as @ +6, @z have
the usual meaning. If @ (x,y) = 1 whenever x+y, then @
is denoted by 1.

1.3. Let @ and « be, respectively, a semimetric
and & weight on Q. Then P = < Q,Q@,w> will be called a
finite weighted semimetric space or a FWM-space or simply

& space. A space {(Q,® ,0? will be denoted by O. We put
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WP = wQ, dP = max @ (x,y), £P =1log |1qeQ: uq >
>03| if @ > 0, £0 = 0. If BcQ, then mp designates
the weight function (U-B(X) = @{XnB) and Py or PMB
stands for <{Q, @, M“p? .

l.4. Notation. WM(T) is the set of all spaces
¢ T,p ;&> endowed with the following topology:
(T, P> > <T@, &2 iff @, (x,y) —> @ (x,5),
@i (x) —> @ (x) for all x,ye T; (VM) is the class of all
FWM-spaces; ~s is the least equivalence relation on (WM)
such that <Q, @, >~v(T,6, ») if, for some f£: ¢Q—> T,
vt = (a-(f'lt), 6 (£q,79°) = @(q,q°) for all q,q’s Q,
teT; Ix = -x log x for xZ0; if §£ = (x;) is finite, then
Hf  is the emropy, = Ix - L(= x), of £ i Vix,y) =
= H(x,y)/xy for x>0, y>O0.

1.5. Let l’k =<Q,@,u? , kek, be spaces. We put
€ (P,Py) = = (. (uzq'.;a(q,q'): 4,a’e Q), @ (Py,R,) =
= @ (P),Pp)/ Qe @Q. If () & &,, we write P1£P,, If
a € R for k€K, ve put = (s P : kek) = (Q,p, Zg ¢ ?
provided a (@, (q)Z0 for all qeQ, If P = = (P : xeK),
we call (Pk) a decomposition of P; [P, 1 will designate the
space {K,8 ,» > where 6 (k,k°) = P (PP ), »(k) =
= 4y Q. - We put r (Pl'Pz) = H(wPl,sz) @ (PI’PZ)’

1.6. Definition. A non-negative function ¢ on (WM)
wiil be called (I) & subentropy i;f (1) ¢ (Q,ap ;b =
=& ¢< Q,@,m? if aZ0, b30, (2) P, = PP, if
PVvP,, (3) @< Q,@,x>2 ¢ <Q,6,u) whenever P26,
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(4) it P ={4a,b? 'y @y ? , then 9P£H(w) @ (a,b);
(II) continuous if (5) $ 1is continuous on every WM(T);
(III) a quasi-entropy if (1) - (5) hold and (6)

P<Ql, 4> =H(u); (IV) projective if, for any de-
composition (Pk) of a space P, gP< X g P+ @l P

1.7. Clearly, there exist projective subentropies,
and the l.u.b. of all subentropies is a subentropy. We are
going to prove

Theorem. The leaSt upper bound of all projective sub-

entropies is a projective quasi-entropy.

2. We shall need some well-known and/or easily proved
faets concerning the entropy H.

2.2, If x,2 ¥;>0, then V(xl,xz)év(yl,yz).
2.3. If bZa>0, then H(1,a)/H(1,b)21 - log ba~l/10g b.

Proof. By the mean value theorem, H(1,a)/H)1,b) =
= f(a + x)/2(b + x), where f(u) = log u + log e, 0£x£1,
Hence H(1,a)/H(1,b)21 - log (b + x)(a + x)']'/log (b + x).

3. We are going to define a function on (WM) which
turns out to be (i) a projective quasi-entropy, (ii) the
l.u.b. of all projective subentropies,

3.1. We dencte by A the coflection of all
DcUH0,13%: n<w) such that (i) xeD if x< ye D, (ii)
x0eD iff xleD, If D € A » we put D° ={xeD: x0eD 3,
D" =D - D’, D(X) ={yeD: y&£ x for some xeX3 where Xc D,
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3.2, Definition. A family P = ¢ P : xe D) will be
called a dyadic expansion (d.e.) of P if (1) De A .
(2) P, &P, (3) P, = P, + P, if xeD’, (4) Py = P. We
put [(x) = I'(P,x) = _I"(Pxo,le), '? = = (T (x):

: xe D). If, in addition, (5) 4P, =0 if xe D" , then
$° will be called a complete dyadic expansion (c.d.e.)
of P. For every Pwe put ¢cP = inf {TP : P is a c.d.e.

of P? .

3.3, lemma., If P = (Py: x€D) is a d.e. of P, then
cP& TR + = (eP : xe D" ).
Proof. Iet € > 0. Choose € (x)>0, xe D" , such
that = e (x)< e . For each x&D” choose a c.d.e.
&, = (Px’y: ye D) such that TR £cP, + e(x). Put
D* =D’y U(x.D,: xeDd"), If zeD’, put PY=P,; if xe
€ D“, y& Dy, put P;.y = P!,y' Then &P*= (Pz': ze D¥* ) is

c.d.e. of P, cP£"P*= = (T (P,x): xeD’) + =P,
:xed) £ PP + = cPp + = g (x).

3e4. If (P(t): teT) is a decomposition of P, s =
=[P(t): teT1, then cP£cS + = cP(t).

Proof. Let € > 0. Choose a c.d.e. ¥ = (S4: xeD)
of S=<T,8,»> such that "¥ % eS+¢& . Put g =
= LT,¥,». >, P = = («(x,t)P(t): te T) where
x (x,t) = »_(t)/»(t). Clearly, P = (Py) is & d.e. of
P. It is easy to see that T"P =TI'¥ . Since ,?.Sx =0
for xeD” , there are t.€T, xeD“, such that D(t) =
O if t#t . Since P, = (x,t )P(t), we have 2("1’:‘
Pty =1t) = cP(t). By 3.3, cP & T'¥ + = (cPy: xeD") =
'Y + = (cP(t): teT),
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3.5. The function ¢ is a projective subentropy.
Proof. Consider conditions (1) - (4) from 1.6,1,
Clearly, (1),(3),(4) are satisfied, (2) and the projecti-

vity follow easily from 3.4.

3.6 If P, = {Q,1, 43> , then T (P1,P,) 2
ZH(mq + “s) - He - Hu,e
Proof. Put [P,,P,1=(41,2},6, »1 , Clearly,
§(1,2) =1 - = (qa. “09: qa Q)/mym, where m; = 4Q.
By 2.2, H(m,,m,) (ulq.(o.zq/mlmzéﬁ((u-lq,(uzq), hence
T (Pl,Pz)zH(ml,mz,) - = (H((qq,5q): q€Q), from which

the assertion follows at once.

3.7. Proposition. ¢ <Q,1,«?> =Hu . For any P,
cP£ wP,dP. £ P,

Proof. I. Let P =<Q,1,« > . By an easy induction
proceeding on | Q| it is shown that cP£Hu . From 3.6,
it follows at once that I'P 2 Huw for every c.d.e. &
of P. II. If P = ¢ Q,@ , > , then
cP&wP.dP.c < Q,1,«/wP Y £ wP.dP. £P,

3.8. If ¢ is a projective subentropy, then @ P<cP
for every P.

Proof., let P = (Px: x€eD) be a c.d.e, of P, By 1.6,
1(4), for every xeD’, @lL PyosPxy 1 £ T (P,,P ). Sin-
ce ¢ is projective, P+ PP, + 9l PoorPr11 2 9P,
for xeD’, This implies = (@[ PigiPg1l: xeD)2 9P,
hence Z(T(Pxo,le): xeD)Z2 P, 'P Z @ P, which

proves the assertion.
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4. It remains to prove that ¢ is continuous.

4.1, If P’ + P“ =P, wP£1l, P41, wP” % a, then
cP’ZcP - a, 2P = H(a,1).
Proof. By 3.4, cP'Z cP - ¢P" - c[P,P”]. By 3.7, c(P")&
a.lP. Clearly, c[P,;P“1£H(wP, wP"” )£H(a,1).
4.2, Let p,r,s,t,u&R be positive, p<1l, r = p'l,
8<1, t =225 41 - 8)(1 - p)22(1+p)2. Let P =
= <Q,@,u>, wP£1l, dP£1. Let 4cQ, B =Q - A, @(x,y)=
= 0 for x€ A, yeQ. Then, for every c.d.e, P = (Py: xeD)
of P, u.I'® 2 cPp - (2 + r)a.£P - H(a,1l) - (1 + r)a H(1,t),
where a = wA,
Proof. 1. Put P, = {Q,@,s,> . For xeD, put ux =
= MQ, ¢x = mA, (Bx= wB.Put 2= xeD: xx>p,Bx3.
(hoose an antichain Xc Z with ZcD(X). Then (1) = (P;:
:x€eX)£P, (2) waé(l +r), «x if x€Z, Put ¥ = { xeX:
txx2 Bx}, P;: =P, - = (Py:yeD(X)nY) for xeD - D(Y),
P, = 0 for xeD(Y), P’ = Byy Pp = (Qe, >, p'x=
= WB, Pé’x = P_MB, Then (Pg: xeD) is a c.d.e. of P,
Clearly, (3) @x - 3'x & xx if xeD - D(Y), (4) P, =P,
if xeX - Y. It is easy to see that (5) (1 + p). B'x2
Z2(1 - p)e ex if x&Z uD(Y).

II, Iet k= 0,1; put E =1 - k. Put E; = D°AD(Y),
E°=D" - E;, E; ={xeE’: xkeY for some k }, Eq ={xeE":
for some k, xk€X - ¥, t 3/(xk) 2 B’(xk) ¢}, E, = £xeE’ :

: xk€X = Y for some k? - Ey, By ={x€E’: xk¢2, k = 0,1% .
It is easy to see that E; are disjoint, U E; = D’ . Put

T (x) = T (Pyq,Byq), T(x) = r‘(P];,xO'Pl;,xl)’ g; =
= Z(TP(x): x6Ey), gf = = (IM(x): xek,),
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gy = Z(cPé,x: x€E;), lemma 3.3 implies (6) ey +

+ =(gg: i =2,...,5)2¢cPS By 3.7, °Pg y & B’ x.£P,

hence (7) gf' 4 (1 + r) a.£P, by (1),(2). Clearly, g = O.
III. If xe Ej, xk€X - Y, then I'(x)4H( B’ (xk),

’(xk)) £ 3’ (xk) H (1,t), hence, by (1),(2), g5 £

£(1 +r) a H(1,t). - If er4, xk€X - ¥, put m = @ (xk),

T = w(xk), b =@ (xx), B =@ (xk). Clearly, (8) tb<D.

Since xk&Z, (5) implies (9) B@Z(1 - p1 + p~Lt. Since

xk€X - Y, we have, by (4), oc(xk)< b, hence (10) 2b>m.

By (8)-(10) and 2.3, V(m,®)/V)b,B)Z (1 - 8)(1 - p)(1 + p)-L

hence ug, g;. - If xeE;, then, by (5), @‘(xk) &£

€0 -1+ p) @w(x), k = 0,1, hence, by 2.2, g Z 8.

Iv. By (6),(7), and III, u,DP - cPp 2 -

- (1+r)a.fP - (1+r)aHQ,t). By 4.1, cP'_chE-
- a,LP - H(a,1), This comple tes the proof.

4.3. For every T and every € > Q there exists a
d"> 0 such that if P%P, Pe W(T), wP4 1, dP4 1,
w(P - P') £ 0 , then lcP - cP g g .

This is easily deduced from.4.1, 4.2,

4.4, let P = (Qe,w> , P(n) = ¢Q, @Ppr+” be
spaces, P(n)— P (in WM(Q))., Then ¢Py —» cP.

Proof. I. Let P = {P,: x¢D? be a c.d.e. of P.
Let Px(n) be the space obtained from Py by replacing ®
with @ . It is easy to see that P ={P;(n): xeD 3
is a c.d.e. of P(n) ama I'® ,—T2 , hence
1lim sup cP £cP. - II. There exist t,< 1 such that t,— 1,
and @ (x,y)2 th @(x,¥) for all n and all X,y €& Q. Hence
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>
cpn = tn.CP.

4.5, Propositioms 4.3 and 4.4 imply that c is comti-
nuous. Hence, by 3.5 and 3.7, ¢ is a projective quasi-
entropy. By 3.8, ¢ is equal to the l.u.b. of all projec-

tive subentropies. The theorem 1.7 is proved.

5, Remarks. 1) I do not know whether there exist
projective quasi-entropies ¢ =% c, - 2) A subentropy ¢
may be called inductive if ¢ P 2 ¢ Py + qu whenever
P = Pl + Pa. Problem: do there exist inductive quasi-ent-
ropies? - 3) let ® and w« be, respectively, & semimet-
ric and a measure on M, If Xc M, YcM, put & (X,Y) =
= X;{‘Y @ (x,y)dm(x)dely), @ (X,Y) = 53‘ (X,Y)/ X, X,
Consider finite measurable decompositions 7°= (V: keK),
U V. = M. Assume that there are sufficiently many, in a
sense which can be specified, decompositions (Vy) such
that @(V,,V;) < for h#k. Define LV¥1=LV 1ina
way quite analogous to that in 1.5, and define
C<M,@, > to be the limit, provided it exists, of
¢ LV] with respect to the filter of all ¥ described
above. Problems: (a) to find (M, @, & > for which the
definition works, possibly after a suitable modification;
(b) to find a characterization of € analogous to that of
¢ in 1.7; (c) to intreduce C directly by means of suitab-
1y defined c.d. expansions (cf. 3.2). - 4) Concepts just
described may be useful e.g. if, in addition, a topology

on M is given and @ is continuous at every { x,y), X#%J¥.
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