

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log73

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

DECOMPOSITION OF SPHERES IN HILBERT SPACES

P. ERDÖS, D. PREISS, Budapest - Praha

<u>Abstract</u>: A simple construction of a graph with \mathcal{K}_2 vertices and with the chromatic number \mathcal{K}_1 whose every subgraph spanned by \mathcal{K}_1 vertices has chromatic number \mathcal{L}_0 is given.

Key word: Chromatic number of a graph.

AMS: 05C15

Ref. Z.: 8.83

Assume the generalized continuum hypothesis. Consider the unit sphere of the Hilbert space of $K_{\infty+2}$ dimensions. We join two of its points by an edge if their distance is greater than $\frac{3}{2}$. Since $\frac{3}{2} < \sqrt{3}$ the chromatic number of this graph is by the following theorem $K_{\infty+1}$ (a graph is called m-chromatic if one can color its vertices by m colors so that two vertices which get the same color are not joined, but one cannot do this with fewer than m colors). On the other hand every subgraph spanned by $K_{\infty+1}$ vertices has again by the following theorem chromatic number $L = K_{\infty}$. A different construction of such graphs is given in [1].

This note was written at the Durham symposium on the relations between infinite-dimensional and finite-dimensional convexity (1975).

Theorem. Let $\mathfrak{S}_o \leq n < m$ be cardinal numbers. Then (i) - (iii) are equivalent and imply (iv), moreover, under generalized continuum hypothesis they are equivalent to (iv).

- (i) For every $c>\sqrt{2}$ the unit sphere in a Hilbert space of m dimensions can be written as a union of n sets with diameter < c.
- (ii) There is a number $c \in (\sqrt{2}, \sqrt{3})$ such that the unit sphere in $\mathcal{L}_2(m)$ can be written as a union of n sets with diameter $\angle c$.
- (iii) There is a family $\mathcal C$ of subsets of m such that card $(\mathcal C) \leq n$ and $\mathcal C$ separates points of m (i.e. for ∞ , $\beta \in m$, $\infty \neq \beta$ there is a set $C \in \mathcal C$ with card $(C \cap \{\infty, \beta\}) = 1$).

(iv) $m \le 2^n$

Proof. The implications (i) \Longrightarrow (ii) and (iii) \Longrightarrow (iv) are obvious. (ii) \Longrightarrow (iii): Let $\{A_{\mathcal{O}}; \ \mathcal{O} \in n\}$ be sets in $\ell_2(m)$ with diameter $<\sqrt{3}$ covering the unit sphere in $\ell_2(m)$. For α , $\beta \in m$, $\alpha \neq \beta$ put

$$\mathbf{x}_{\alpha,\beta}(\gamma) = \frac{1}{\sqrt{2}} \text{ for } \gamma = \infty$$

$$= \frac{-1}{\sqrt{2}} \text{ for } \gamma = \beta$$
0 otherwise.

Put $C_{\sigma} = \{ \alpha \in \mathbb{m}; \text{ there exists } \beta \in \mathbb{m}, \beta \neq \alpha \text{ such that } \mathbf{x}_{\alpha,\beta} \in \mathbb{A}_{\sigma} \}$.

If ∞ , $\beta \in \mathbb{R}$, $\infty + \beta$ then there is a d such that $\mathbf{x}_{\alpha,\beta} \in \mathbb{A}_{\sigma}$. Consequently, $\alpha \in \mathbf{C}_{\sigma}$ and $\beta \notin \mathbf{C}_{\sigma}$ since $\|\mathbf{x}_{\alpha,\beta} - \mathbf{x}_{\beta,\gamma}\| \geq \sqrt{3}$ for any γ . Therefore the family $\{\mathbf{C}_{\sigma}'; \ \sigma \in \mathbf{n}\}$ separates points in \mathbf{m} .

(iii) \Longrightarrow (i): Let $0 < \varepsilon < \frac{1}{2}$. Let \mathcal{A} be a family of subsets of m separating points of m. We may and will suppose that A is closed under complements and finite intersections. Let ${\mathcal B}$ be the system of all pairs of finite sequences $\{(A_1,\ldots,A_p), (r_1,\ldots,r_p)\}$ where $A_1,\ldots,A_p \in \mathcal{A}$ are nonempty and disjoint and r_1, \dots, r_p are rational numbers that $1 > \sum_{i=1}^{\infty} r_i^2 > (1 - \varepsilon)^2$. For $\sigma \in \mathcal{B}$, $\sigma = \{(A_1, \dots, A_n),$ $(r_1, ..., r_p)$ } put $C_{\sigma} = \{x \in \ell_2(m); \|x\| = 1 \text{ and there are }$ $\alpha_i \in A_i$ such that $\sum_{i=1}^{2} (x(\alpha_i) - r_i)^2 < \epsilon^2$, First prove that the family $\{C_{\sigma}; \sigma \in \mathcal{B}\}$ covers the unit sphere in $\ell_2(m)$. If $x \in \ell_2(m)$, ||x|| = 1 find $\alpha_1, \dots, \alpha_n$ that $\|y - x\| < \varepsilon$ where $y(\alpha_i) = x(\alpha_i)$ and $y(\alpha) = 0$ for all other lpha . Since ${\mathcal A}$ is closed under complements and finite intersections, we can find disjoint sets $A_i \in \mathcal{A}$, i = = 1,...,p such that $\alpha_i \in A_i$. Choosing r_i sufficiently close to $x(\alpha_i)$, we obtain $x \in C_{\sigma}$, where $\sigma = f(A_1, ..., A_n)$, $(\mathbf{r}_1,\ldots,\mathbf{r}_p)$.

Let us estimate the diameter of C_{o^r} . If $x,y \in C_{o^r}$, choose $c_i \in A_i$, $\beta_i \in A_i$, (i = 1,...,p) such that

$$\sum_{i=1}^{n} (\mathbf{x}(\mathbf{x}_{i}) - \mathbf{r}_{i})^{2} < \varepsilon^{2} \text{ and } \sum_{i=1}^{n} (\mathbf{y}(\beta_{i}) - \mathbf{r}_{i})^{2} < \varepsilon^{2}.$$
Put $\mathbf{x}_{1}(\mathbf{x}_{i}) = \mathbf{x}(\mathbf{x}_{i}), \mathbf{x}_{2}(\mathbf{x}_{i}) = \mathbf{r}_{i} \text{ for } i = 1, ..., p,$

$$\mathbf{x}_{1}(\mathbf{x}_{i}) = \mathbf{x}_{2}(\mathbf{x}_{i}) = 0 \text{ for all other } \mathbf{x}_{i},$$

$$\mathbf{y}_{1}(\beta_{i}) = \mathbf{y}(\beta_{i}), \mathbf{y}_{2}(\beta_{i}) = \mathbf{r}_{i} \text{ for } i \neq 1, ..., p,$$

$$\mathbf{y}_{1}(\beta_{i}) = \mathbf{y}_{2}(\beta_{i}) = 0 \text{ for all other } \beta_{i}.$$
Then $1 = \|\mathbf{x} - \mathbf{x}_{1}\|^{2} + \|\mathbf{x}_{1}\|^{2} \ge \|\mathbf{x} - \mathbf{x}_{1}\|^{2} + (\|\mathbf{x}_{2}\| - \|\mathbf{x}_{1} - \mathbf{x}_{2}\|)^{2} \ge \|\mathbf{x} - \mathbf{x}_{1}\|^{2} + (1 - 2\varepsilon)^{2}$
thus $\|\mathbf{x} - \mathbf{x}_{1}\|^{2} \le 4\varepsilon - 4\varepsilon^{2} \le 4\varepsilon$;

similarly we prove that $\|y - y_1\| \le 2 \sqrt{\varepsilon}$, therefore $\|x - y\| \le \|x - x_1\| + \|x_1 - x_2\| + \|x_2 - y_2\| + \|y_2 - y_1\| + \|y_1 - y\| \le \sqrt{2} + 4 \sqrt{\varepsilon} + 2\varepsilon$.

(iv) \Longrightarrow (iii): We can suppose that $m=2^n$ and n is a set of ordinals such that card $T_{\infty} < n$ for any $\infty \in n$. For $\infty \in n$ and $B \subset T_{\infty}$ put $A_{\infty,B} = \{C \subset n; C \cap T_{\infty} = B\}$.

The family $\{A_{\infty,B}; \infty \in n, B \subset T_{\infty}\}$ separates points in 2^n and, since $2^{\operatorname{card}} T_{\infty} \neq n$, its cardinality is $\neq n$.

Remark 1: Not using the continuum hypothesis we can prove (in the same way as in (iv) => (iii)) that (iii) holds for such cardinals n, m that

- (a) $m \le 2^n$
- (b) If n < n then $2^{n'} \le n$.

Remark 2: If $\kappa_0 = n < m$ are cardinal numbers satisfying the condition (iii) of the theorem and if $n^{k_0} = n$ then the unit sphere in $\ell_2(m)$ can be written as a union of n sets with diameter $\ell = \sqrt{2}$. (One can take the covers ℓ_p with diameter $\ell = \sqrt{2} + \frac{1}{\ell^2}$ and put $\ell = \ell_p = \ell_p + \ell_p = \ell_$

Reference

[11 P. ERDÖS and A. HAJNAL: On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung.17 (1966), 61-99.

Mémetvölgyi ut 72/c

Hungary

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 9.9. 1976)