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ON THE STRUCTURE OF FIXED POINT SETS OF PSEUDO-CONTRACTIVE
MAPPINGS
Rainald SCHONEBERG, Aachen

Abstract: Let (E, I |l ) be a Banach-space, X a closed
and bounded subset of E and let £f: X—> E be a pseudo-con-
tractive mapping. It is shown that under certain conditions
the set FPix(f) of fixed points of f is metrically convex and
hence pathwise connected.
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The purpose of this note is to give some conditions
which assure that the fixed point set of a pseudo-contract-
ive mapping is metrically convex amnd hence pathwise connec-
ted. A recent result of the author is basic for the proofs.

Definition 1. let (E, |l | ) be & Banach-space and XcCE.
X is said to be metrically convex: (—>

1o Y 3 ewd® b= sk+ly = si
MR z_;]x z2+xnz+yAlx-yl=lx=-12 Iy
X %)

Remark 1. Every comnvex set is metrically convex but
the converse isn’t true in general (E:= Rz, i ] := max-norm,
Xi=4(1tl, t)l tel-1,113% ).

A fundamental property of a metrically convex set is desc-

ribed by
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Proposition 1 (K. Menger). Let (E,ll ) be a Banach-
space, Xc E be closed and metrically convex, x,ye X and
a:=llx=-yh.

Then there is ¢ :[0,d] — X such that

(1) g =xAqg(d =y

(ii) w,bvel.'o,d,‘_lig(a) -g()l=la-0l

(i.e. ¢ is an isometry)
Proof see [ 11, Theorem 14.1.
Corollery 1. Let (E,l Il ) be a Banach-space anl let
Xc E be a closed and metrically convex subset of E.
Then X is pathwise connected.
Proof: Obvious.
Corollary 2. let (E, 1 1) be a strictly convex Banach-
space and let Xc E be closed.
Then X is convex if and only if X is metrically convex.
» Proof. If X is convex then X is obviously metrically
convex. Conversely suppose X is metrically convex and let
x,y€e X. By Proposition 1 there is an isometry
@:lo, Ix-3yH]—X such that (o) = x and
@(lx=-yl) =y. Since (E, I I ) is strictly convex, @
is affine (see L9]) and hence gL [e,lix - yll] is con-
vex. Therefore co( {x,y$ ):= convex hull of ix,y¥ ¢
cgllo,lx~-ylllc Xi.e. X is convex.
Definition 2. Let (E, I ||) be a Banach-space, Xc B and
let £f: X—> E,

(1) £ is said to be nona;pansive:(—.:-—,)x XE‘X I £(x) - £(yI&

L

Ilx =yl
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(2) f is said to be gaeudo-contractive P

1= VYV v le-yllél|(1+r)(x-y)-r(f(x)-
s, peX nzo
-£yN

Remark 2. Pseudo-contractive mappings are characteriz-
ed by the property: f is psaudo-contractive if and only if
14 - £ is accretive (see [21). It js easily seen that the-
se mappings include the non-expansive mappings.

In [111we proved the following theorem:

Theorem. Let (E, [ ) be a Banach-space and suppose M
is a closed subset of E such that every nonempty, closed,
bounded and convex subset of M possasses the fixed point
property with respect to nonexpansive selfmappings. Let g:

. M—> E be nonexpansive such that at least one of the fol~-
lowing conditions holds:

(A) M is convex ard g (Mlc M

(B) Fix (g)ndu =g 1)

Then the (possibly empty) fixed point set of g is metrical-
ly convex and hence pathwise connected.

The approach of [4], showing how fixed point theorems
for pseudo-contractive mappings may be derived from the fi-
xed point theory ef nonexpansive mappings, may be modified
to obtain the following two theorems:

Theorem 1. Let (E, I 1) be a Benach-space aml suppose
X is a nonempty, closed, bounded and convex subset of E such
that every nonempty, closed, bounded and convex subset of X
possesses the fixed point property with respect to nonexpan-

1) & M:= boundary of M
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sive selfmappings. Let £f: X—> E be a k-set-contraction
(in the sense of the Kuratowski-measure of noncompactness
[6], xZ o), pseudo-contractive and inward (i.e.

xZax “3“{ cﬂao £(x) = x + ¢(u - x), see [3]).

Then Fix(f) is nonempty, bounded, closed and metrically
convex,

Proof. ILet A e (0,1) such that A-.k<1 and define
T: X—>E by T(x):= x - A - £(x). Because f is pseudo-cont-
ractive we have
(i) x"v“’tex IF'T(x) = T(y)l2 QL -A)lix=~-ypl

Let now y € X. Defining 15: X—~ E by hy(x):= Af(x) +

+ (1 =A)y it is easily verified that hy is condensing (be-
cause A-k<1) and inward (because f is inward)., Hence by
(8] there is xe X with hy(x) =x i.e. T(x) = (1 - A )y. Thus
we have shown:

(ii) M:= (1 =A)XcTI[X)

Because of (i) and (ii) we may define g: M— M by g(x):=

i= (1 -A)T"1(x). Then g is nonexpansive (because of (i))
and every nonempty, closed, bounded and convex subset of M
possesses the fixed point property with respect to nonexpan-
sive selfmappings. Since Fix(g) = (1 -A)Fix(f) the theorem
stated above gives the assertion.

Corollary 3. Let (B, Il) be a Banach-space, @+ Xc E
be closed, bounded an convex and let £: X— X be a k-set-
contraction for some k<1 and pseudo-contractive,

Then Fix(f) is nonempty, compact and pathwise connected.

Proof. Let C,:= co(£[X]) and Cpe1i= co (f[Cn]) for
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nzl. Then Cy:= ”01 Cn is nonempty, compact and convex
such that £[Cyplc C, (see e.g. [61). Furthermore

Fix(f)ec C . Setting g:= fl ¢ Theorem 1 and Corollary 1
=~

yield - observing Schauder s fixed point theorem - that
Fix(g) is nonempty, compact and pathwise connected. Because
of 'Fix(f) = Fix(g) we are done.

Theorem 2. let (E, | ) be & Banach-space such that
every nonempty, closed, bounded and convex subset of E pos-
sesses the fixed point property with respect to nonexpansi-
ve selfmappings. Let furthermore XcE be open and bounded
amd let £: X—> E be a k-set-contraction (k = o) and pseudo-
contractive such that Fix(f)n 89X = 4.

Then the (possibly empty) fixed point set of £ is closed,
bounded and metrically convex.

Proof. Choose A € (0,1) such that A .k<l and de-
fine T: X— E by T(x):= x = Af(x). Set M:= T(X]. Then ¥
is closed because X is bounded and AT is condensing. Since
£ is pseudo-contractive we may define g: M—>E by g(x):=
:= (1 =A)T"1(x). Then g is nonexpansive. Now Nussbaum’s in-
veriance of domain theorem [6] yields that T maps X into the
interior of M. Therefore 38 McT [3X] which implies that
Fix(g) n 9M = ¢, Observing Fix(f) = (1 -A) Fix(f) we are
done.

Corollary 4. let (E, <, Y ) be a Hilbert-space and
let Xc E be an open, bourded neighborhood of the origin. Let
£: T—»E be a k-set-contraction for some k2o and pseudo-
contractive such that

= = 1.
(Yox Mo 10 7Rx=vA<
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Then Fix(f) is nonempty, closed, bounded and convex.
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