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Abstract: The paper contains the proofs of some cri-
teria for the convergence of the Fourier series of a con-
structive function. In particular, the theorem about the
convergence of the Fourier series of a constructive func-
tion of weakly bounded variation is proved.
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Introduction. One of the main results of my thesis

[9] is proved in the paper. On the basis of the results of
the work [9] all the basic theorems of the theory of trigo-
nometric Fourier series hold in constructive analysis. It
is possible to prove most of these results by means of the
methods closely related to the methods by which they are
proved in classical mathematies. This, however, does not
hold for the theorem on the convergence of the Fourier se-
ries of a constructive function of weakly bounded variat-
ion. In classical mathematices this theorem is proved by
means of the theorem on the representation of a function

of bounded variation as the difference of two non-decrea-
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sirg functions. In the constructive analysis this does
not hold [7] for constructive functions of weakly bound-
ed variation and therefore it was necessary to find a dif-
ferent method' of the proof.

Theorems 1 - 4 are constructive analogues of well-
known theorems of the classical theory of Fourier series

(see e.g. [81]).

Fundamental definitions. Normal algorithms [3] will
be called simply "algorithms". If the algorithm (X is ap-

plicable to the word P, this fact is denoted by ! (X (P)

and the result of the application of the algorithm CfL to
the word P is denoted by (X (P). The Markov principle is
used: For every algorithm (£ and every word P,

R A NN (P) always holds. All assertions are to

be understood in accordance with the rules of the construc-
tive interpretation of propositioms [4].

Natural and rational numbers as well as FR-numbers
are defined in [5]. We shall often use the term "point" in-
stead of "FR-number". An algorithm f is called a construct-
ive function of a real variable (or only function) [61 if
it satisfies the following two conditions:

1) For any FR-number x, if !£(x), then f(x) is FR-
number;

2) Vxy (1£x) & x =y o If(y) & £(x) = £(y)).
Any constructive function is continuous in any point in
which it is defined [61. We shall use (with or without
strokes and subscripts)

m, n as variables which vary through natural numbers,
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j,k, 2 as variables which vary through integers,
a,b,c,t,u,v,X,¥,a, 3,9, , @, § as variables which
vary through FR-numbers and

f,2,h as variables which vary through functions.

A set will be understood as a set of FR-numbers, i.e.
the word M of the form A p ¥(p), where p is one of the
variables for FR-numbers and & (p) is a one-parameter
formula [4] with the parameter p., For this set M we define:
qe Ul =5 F (q), where q is also one of the variables for
FR-numbers. We denote by R the set of all FR-numbers. lLet
K, and M, be two sets. We define: Me M, < vV x (xely=
> x€MW,). The set AXx (a€x€b) (where a and b are ex-
pressions denoting FR-numbers and & <€ b) is called a seg~-
ment; we denote this set by aab, We denote: avh <
= Ax (a<x<b),

A function f defined on the segment aA b is called a

function of weakly bounded variation on aaA b if there ex-

ists a FR-number u such that
m

y

0=4|f(xi) - f(xi_l)l < u for a € x, < X) € .o

oo € X, €D,
We understand the notions of sequence of FR-numbers and
functions, their convergence, polygonal functiom on a seg-
ment and uniformly continuous function on a segment in the
usual (constructive) sense. We denote:

t Meewwr 2 I Vmin, Vn(n;nes Ixn-xl< 2.

The concept of Lebesgue integrability and Lebesgue
integral of a comstructive function is defined imn [1]. We
derote £(f,aab) if £ is defined on the segment aab amd
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f is Lebesgue integrable in aa b. One can construet an al-
gorithm which for eévery a and b (where a< b), every fune-
tion f such that & (f,aab) produces on the basis of the
sufficient information about the function f£ (this informa-
tion will be denoted by [£1) and on the basis u,ve aabd
the value of the Lebesgue integral of the function £ from
u to v. The value of the Lebesgue integral of the function
f from u to v will be denoted by .[:’E £(x)] ax.

Let us note that if £ is of weakly bounded variation
on &aAb, then f is Lebesgue integrable on aAb (see[1],
Theorem 1),

The following lemmas can be proved easily immediately
from the definition of the Lebesgue integral. (In Lemme 1
we denote the composition of the functions f,8 by fo g ana
the inverse function of the function g by g.1-)

Lemma 1. Let ¢ and q be FR-numbers, let c+40Q and let
g be such that V x (g(x) =c.x + q), Then

(x) L(f,aab)= L (20 g, min (g_l(a),g_l(b))A max

(g_l(a),g_l(b)))

if one side in (% ) holds.

Lemma 2, Let & (f,aab), let £ be periodic with pe-
riod u and let u< b - 8. Then for every oc ang AR (whe-
Té¢ w<fp), L(f,caB) and for every FR-number c,

L@l ax= [ [ae) an
a c

The functions sin and cos and FR-number J¥ can be defined
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by means of the well-known power series so that they have

well-known properties especially those we shall use.

Fourier series

Definition. let &£ (£,0A24). Then obviously there

exist the sequences -iak'iwk=o and {bk'éal;l such that

2

1
(1) Vk ((kzO:;k-;r- falf(x)-cosl:dex)&
1 /M .
&(k>0=bk=;r--j; [ £(x) - sin kx1 dx)).

These sequences will be called the sequences of the Fou-
rier coefficients of the function f; &, b, will be cal-
led the Fourier coefficients of the function £;

we shall denote by ern the functions such that

m
(2) Vv x(si(x) = % *ay +&.§4 (ak- cos kx + by + &in kx)).

The sequence -i.sfl }m will be called the Fourier series of
the function f.

Notation. We shall denote by S,, the functions such
that

(3) Vox(syx) =1+ 20 cos 2 ).
Ifr £(£,0a29) and £ is periodic with period 2or , we
shall denote this fact by P(£,0n207).

Theorem 1 can be proved eagily in the same way as in
classical mathematics (see e.g. [81),

Theorem 1. let &£ (£,0A2%)., Then V mx (sg(x) =
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= Lﬂ' f [f(u)-s.( )Jd.lb) .

If P(£,0a2ar), then

A+

\4) me(ai(x) = 2—4“- £ [£(u) . Sm(——)] du &

z .
Sag(x = o [RL(ex + 20) + 20x - 20)) - 5(0)) av).

In particular, if £ is a function such that V x(f(x) = 1),
we obtain

ve1=32. f [s (t)]dt&\v’z(l=~—f [5,¢55=)] aug

1 M~
&1 -z—a’"L_,Esm(TJ du)).

Theorem 2. Let f be of weakly bounded variation on
aA b, Then there exists a FR-number A such that

() VuxB(u>0&a e x<ffabefo

=| B[f(x)-m x]d.x\éi&l B[f(x)-b('tn .xJalxl(-'i).
o “ “ < “ (o

Proof. There exists u such that for every non-decrea-

8ing finite sequence {ooj,}:'o of FR-numbers in aAb we
have

(i
(6) 22, 2066) = £, )l € u.

Then obviously also there exista v such that
(n Vx(xeanbs | £(x) | < v).

let £ 5 2. (u+3.v), («—>Oar\dn<-cc<{3<-b. Accor-
ding to lemma 1
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® (PO aim@xddus L. [T T2 (%) pim gy ldy .

Obviously 911 ARL (k-1 Seac <bo W & L.l t-B< (b)),
Let

(9) (- bau.c<hwr&Lleré&am-Be(Lrd)a.
Then obviously k - 1 & £ . One can construct the non-de-

creaging finite sequence < Yy if: L_ 4 such that

%4' (u--uo&\'/j. (héé—é L = I’«"S ?'W) g( ’*L#'f’ (!l.-ﬂ .
We have
) . 241 %y .
0) [T es(E)rinldgn 3 7 Ce(E) aingyIdy -

et k&j £ £ + 1. Then rga_"Aty%.E(g',-ﬂ)-srAé-ar .
We have Yy (%e(j,_‘l).xaé.ar:,dng,-(—‘l)é'.’- lain g 1) .
Hence
(1) j‘::_ff(%)-m:,]dry-(—4?-4_[‘::1&(%)- lain gyl Idey .
According to Lemma 1

G-

¥ ; % t 41 ;
(12) j*r '[f.‘(%,_)- Lnim g 11day = f%_ qu),’[f(;-f-;— or)- ladm ¢ 11t

let us suppose that k < £+ 1., From (10) - (12) we obtain
did . k-4 T
fua lEE) mimgdebg = Y [

L o o
(13) -1,,:@,,114.,:,554(-4)”1 fo"u(%a.?_;-‘,f).

[f(%—:+%:i sr) .

Pt
Anim g1y +A7% [O Te(Fe L) Laim oy 11

Because of (13), (8), (7) and (9)
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T
) 1[0 aimuxidx) e Lo 2 [ Tain g 1dg +
Tk P (2 ) | aim gl dey) .
+LE ¢ 1775 (%4 22 ) yldy

Let k =£ + 1, By (9) then £- 7 & - <@-B<(£L+4) T,
hence by (8) and (7)

«3 (220
1!“’[ £0)singxddxl < g v [ Lipimy Dy <y, [lsiny!ldy,

hence (14) holds also for k = £ + 1, In view of (6),(7) and
(9)

£ -1 54
-Y f(EeZ o) | .
1%) Vg (yeOom ol = 4V £(E ) l<usa)
From (14) and (15) it follows
o . - A
(16) | [ TEGO-pimunldx | € o (u+3en):[ Tainyddy= T .

Let us denote the formulas (9) and (16) by A and B res-
pectively. We have proved A > B , hence 3L A > B ,
hence 11 3% LA = 171 B and because 13Kk L A , we have
797 B, hence (16). The assertion (5) has been proved for
sin, for cos it can be proved analogously.

Theorem 3. Let $£(g,aab). Then

L”[g,(x).b&rv&xldxﬂm 0 uniformly with respect tc

<, Peaanlkt andf:[gr(x)-m‘wu]d,x rars. ol

uniformly with respect to o, 3 € a & £, i.e.

(A7) VYm o Ve Blu>u, &k x<,fec an b =

— l_(':tg (x)ecopuxldx|< 2" l_[f['g.(x)‘/a{nv(axld,x l<2™).
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In particwlar, if &(£,0A2sr) and -{%Gzo, {3, , are
the sequences of the Fourier coefficients of the function

f, then ap =2 0 and R 0.

R>yco
Proof. By Theorem 4 in [11 it follows from the defi-
nition of Lebesgue integral that for n there exists a func-

tion £ of bounded variation on aab (even polygonal on

aab) such that [TLIq(x)- £(x)1ldx<2™" | gy
Theorem 2 we have (5). Let wm, % 2™ A . Then for w>
> @, (hence s % )and x,Bean b ,

1 g (x). cos @bl [T Ig(x)- £ G0 11dx +
ol

+|L‘5[£(x)-m(u.x]dx flo BB %’- < 2™ .

The assertion (17) has been proved for cos, for sin it can
be proved analogously.

Lemma 3 is proved in the same way as in classical ma-
thematics (see e.g. [81, the prodf of Theorem 31) on the
basis of Theorem 3 and using the second mean-value theorem
for lebesgue integral (see [2], p. 264).

lemma 3. Let P(£,042a), letO<d<c < 7

and let {g,“?rm be the sequence of functions such that
VM<%<.x)-L“ccﬂmunf(x-zt))-s,,,ct)ad,u :

Then {q,,%, converges uniformly on R to zero.

Notation. If ®(£,04 2ar) , then we shall denote

£

for a fixed J” by A,

the function such that

; .
W (e (0= T [ (xa 28D + £ (x= 240 S ()7t )



Theorem 4. let P (£,0A22) and let 0< < a_zr_

Then {lafw - bf::; -~ converges uniformly on R to zero.

In particular, if £ is such that V x(f(x) = 1), then we

J
get %j; LS,(t)ldt ,;:;:,4 c

Proof. By Theorem 1 we have

x
2
A=A x)= L[ 01 (e (e v24) + £ (x-280)- S, (0)1dt .

Hence by Lemma 3 (where ¢ = -';L ) the assertion of the

theorem holds.
Lemms 4. Let for f,m,n and FR-numbers a,b,A,x,e,d”

it holds a<b, £ (f,asbd), €>0, a+c < x<€<b=-€,

. LA 3 1 (o

O<dcomim (T ,5),m>7(T-1) ana
(18) Vec b (a<oo < R< & = [ T8 (w)-tim (2m+ )2 1d )

< (a<wc<fR =) ) -am (2m 2 i<’
Then

& ) A+ 4-18(x)|
(19) | L_"!Eq(x,t)-sm(t)]dt le—ger——x , whare

Amaq
(20) @(x,t) = £(x + 2t) + £(x - 2t) - 2- £(x).

Proof. Let the assumptions of the lemma be satisfied.
Then

.
J>m—.1&t ¥ = . Ih,.n0<a’<d'<ar,

»|

2-m +1

hence R

2 d
_gEq(x,t).Sm(t)]d,tz jﬁq(x,t)-g‘é%:‘—”)—éjdi- fr [h(t).gt)1dt,

where h and g are functions such that
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(21) Yth(t) = @ (x,t)- 8in (2m + 1)t)
and Yt (tez’Ad":: gr(t)-—‘g:;)

Obviously &£ (% ,yad’), g is non=increasing on Fad

and > g () > g () > 0 , hence by the second

4
Aln
mean-value theorem for Lebesgue integral ([ 21, p.264)

i
(22) A3 (pes§<d &_l;’f)b(t)-g,(t)ld-t =

- A S raanat) .

By using lLemma 1 we get for §e ¥y ad

3
f’[h(t)]dt=f:[9(o<,1:)-m(2m+4)t]dt =
1 +2§ . weX
(23) =3 ( J:.z.r[f () »im (Q.cm,-\-'ﬂ——‘-—n ldau -
- L‘:':;'tfm).mczmn)i"—;luun
cos (2am+1)§ - ¢0d (2em + )
2.m+ 1

+ 2-£(x)-

We have a <x+ 2. P € Xx+2-§ € X + 2- d< x+€ € 2 and
CeR-c<x=-2 - Tex-2:fex-2-F= b . Henee, in view of
(23) and (18)

A+ 4. 1200
2.-m+4

. Becaumse of (22) thus

\]‘jth(t)]d.tl <

& s A+t 1£€x))
(24) \f’,[q(.x,t)- S.(t)1dtl=| 1{:—»&»¢¢m|<(—-——————-2‘m+4)‘w? .

o . 2 2.m
We have O<7<3— , thus smy>Z &= 2,77 - In

view of (24) we have (19).
Notation. We denote M., aab if a< b, M. is a set ad
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there exists a FR-number € > O such that
Mc(a+eda(&r-¢e) .

Theorem 5. Let (£,0a2ar), Mc, aAb and let the-
re exist a FR-number A such that

(25) VmxafB(xeM&a<w<ff< &>

> Uftf(u).»bn(amnv“'g"ldw |« 5%74 ).

Then Fourier series of the function f£ converges on M to f.

If moreover f is uniformly continuous on a segment cén-
taining M, then the Fourier series of the function f conver=
ges uniformly or. M to f.

Progf. Obviously it suffices to prove only the special
assertion. Let us choose a fixed n>0; there exists a FR-nu-
mber € > O such that Ms(a +e)a(b ~¢); £ is uniformly

on a segment containing M; thus there exists o~ such that

(26) 0<d<min (T, % and

(27) Yxt(xeM%kte 0ad s g (x,t)l< 2

m2z
where cp(x,t) is the same as in (20), In view of (26) by
. 1 . m
Theorem 4 there exists m, > 2" (——;— - 4) such that

J
(28) Vmx (m.2 mm, = |, ()- 42 (0 l< L &1 2. [ T8, (rat-11< 1),

Let l;% and xe M. Let us dﬂlote ‘3 5 — - B’n hm—'
2'4’“—4"4 ‘

&
29 1 [Tglx,t).S,, ($)1dt | < e LEExd)

2-m . We have
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- y
(0 ATx)-£(x0= L. [1g )-8 1dt+ 200

9 J
A3 .j; LS, (t)1dt-1) and
I Tip (x,1)- Sy (4014 [ Tep (). Sy (001t
(31)_5, [g(x,t)-8,,(£))dt = [ (g (x,1). 5, (4] +j‘1;th, .S, A
Cearly 0 < 3 < d°, thus in view of (27)
(Tt 20:8 (t)]d,tlé—'f-—-fzzls (t)1Jdt . Obviously for
Ia @ IX, 60 Sy A Jo - Nm .

every t we have |S, (+)| <« 1+2:m , thus

f018, ) 1dt < (2m+1).g=a.m , hence
7 a
(32) 1 Lg (x,t)- S, tldtl « = .

In view of (28) - (32) we have

£ £ £
5, () - £(X) e I/bm(x)-bm(x)l +

£ A+ 1 £00OI
+ 1850 (x)-£(x)| e%- 2+ £+ =) .

Obviously there exists a FR-number B such that

Vx(x e M 1£ ()1 e B) , hence I w-£0l< £-(243+ 2242 ),

‘We have proved that there exists a FR-number C> G such that
Ym Am, Yem x (m Bmo&XGM:Ib:u(x)-f(x)\ %) .
Thus the special assertion holds.

An immediate consequence of this thearem is the follo-
wing theorem.

Theorem 6. Let O (£,0a2ar) and there exist FR-num-
bers a,b,K such that a<b and
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(33) Yma fla<x<fB< ,b':l_[:[f(u)-pim{nnd--;—)uldul-r
+|f:[£(u)-eos(m+-;-)wldu|€- ‘E]-(”—n—m) .

Then (a) thé¢ Fourier series of the function f converges on
avhb to £ and

(b) for every A and B such that, a<A<B<b and f is
uniformly continuous on AAB, the Fourier series of the
function f converges uniformly on AAB to f.

Iheorem 7. Let P (f,0a29r) and let £ be of weakly
bounded variation on a.Ab.
Then (a) the Fourier series of the function f converges on
avb to £ and

(b) for every A and B such that a<A<B<b and f is
uniformly continuous on AAB, the Fourier series of the
function £ converges uniformly on AAB to f.

Proaf. By Theorem 2 there exists a FR-number K such

that (33) holds. Hence by Theorem 6 the assertion of the
theorem holds.,
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